Axisymmetric large strain consolidation by vertical drains considering well resistance under vacuum pressure

2021 ◽  
Vol 14 (19) ◽  
Author(s):  
Yupeng Cao ◽  
Rui Zhang ◽  
Guizhong Xu ◽  
Jianwen Xu
2021 ◽  
Author(s):  
Xueyu Geng

Dredging slurry is treated by a combination of lime treatment and vacuum preloading. However, the mechanical characteristics and consolidation mechanics of lime-treated slurry under vacuum loading is not fully understood, making it difficult to predict slurry settlement. In this study, we develop a laboratory model of lime-treated slurry and subject it to vacuum preloading to investigate the compression and consolidation behaviors. The results demonstrate the reduction of the risk of clogging around the prefabricated vertical drains, the increase in soil permeability, and the improvement of vacuum preloading upon lime treatment. log (1 + e)-log p curves for soils with different percentages of lime content are obtained through a series of modified oedometer tests. Based on these curves, an analytical solution for lime-treated slurry settlement under vacuum preloading was derived and validated through laboratory tests. The solution can be used to predict lime-treated slurry settlement under vacuum pressure effectively.


2005 ◽  
Vol 42 (4) ◽  
pp. 994-1014 ◽  
Author(s):  
Buddhima Indraratna ◽  
Cholachat Rujikiatkamjorn ◽  
Iyathurai Sathananthan

A system of vertical drains combined with vacuum preloading is an effective method to accelerate soil consolidation by promoting radial flow. This study presents the analytical modeling of vertical drains incorporating vacuum preloading in both axisymmetric and plane strain conditions. The effectiveness of the applied vacuum pressure along the drain length is considered. The exact solutions applied on the basis of the unit cell theory are supported by finite element analysis using ABAQUS software. Subsequently, the details of an appropriate matching procedure by transforming permeability and vacuum pressure between axisymmetric and equivalent plane strain conditions are described through analytical and numerical schemes. The effects of the magnitude and distribution of vacuum pressure on soft clay consolidation are examined through average excess pore pressure, consolidation settlement, and time analyses. Lastly, the practical implications of this study are discussed.Key words: consolidation, finite element method, soft clay, vacuum preloading, vertical drains.


2020 ◽  
Vol 122 ◽  
pp. 103498
Author(s):  
Jianhua Wang ◽  
Jianwen Ding ◽  
Heng Wang ◽  
Cong Mou

2014 ◽  
Vol 51 (2) ◽  
pp. 144-157 ◽  
Author(s):  
Ya-Yuan Hu ◽  
Wan-Huan Zhou ◽  
Yuan-Qiang Cai

A very soft clay layer is highly compressible and exhibits significant creep under loading. The classical linearly elastic constitutive relationship and small-strain assumption are not suitable for the consolidation analysis of very soft clays. This paper presents a new large-strain consolidation model that incorporates the Yin–Graham elastic viscoplastic (EVP) constitutive equation for use in studying the consolidation of very soft clay layers with vertical drains under preloading. First, the large-strain fluid continuity equation and the EVP constitutive equation are incorporated into a quadratic differential equation of pore-water pressure and its integral terms. Second, the alternating-direction implicit (ADI) method and virtual node method are adopted to obtain the finite difference solution. A computer program named “BSSDS” is developed for large-strain EVP consolidation analysis of clay layers with vertical drains, taking into account the complicated in situ conditions, such as resistance of vertical drains, smear effects, variation of permeability with void ratio, and multilayered soils. Third, the new large-strain numerical method is applied to the consolidation modeling of very soft clay layers with vertical drains under preloading at a site that is part of the Hong Kong – Shenzhen Western Corridor Link Project. It is found that the foundation settlements of the new large-strain EVP consolidation model have good agreement with the measured data. Finally, three different consolidation models are used to calculate the average degree of consolidation and settlements of the clay layers. The analysis shows that it is essential to consider both large-strain compression and creep effects in the analysis of very soft clay layers with vertical drains under loading.


Sign in / Sign up

Export Citation Format

Share Document