Temporal and ontogenetic variation in the diet of three small pelagic fish in the Black Sea of Turkey

2019 ◽  
Vol 49 (4) ◽  
pp. 1799-1812
Author(s):  
Hacer Saglam ◽  
Ilknur Yıldız
2004 ◽  
Vol 40 (3) ◽  
pp. 42-54 ◽  
Author(s):  
A. D. Gordina ◽  
V. G. Tsytsugina ◽  
Ye. I. Ovsyaniy ◽  
A. S. Romanov ◽  
R.B. Kemp

Author(s):  
Ayhan Dede ◽  
Ayaka Amaha Öztürk ◽  
Tomonari Akamatsu ◽  
Arda M. Tonay ◽  
Bayram Öztürk

The Istanbul Strait (Bosphorus) is a part of the Turkish Straits System, connecting the Aegean Sea and the Black Sea. There are three cetacean species in the Strait, namely the harbour porpoise (Phocoena phocoena), the common dolphin (Delphinus delphis), and the bottlenose dolphin (Tursiops truncatus). To monitor the presence of the cetaceans, a fixed stereo passive acoustic monitoring system (A-tag) was deployed in the middle of the Strait from July 2009 to September 2010. In total 26,814 click trains were detected. Presence, direction and inter-click intervals of phonating cetaceans were measured. Most click trains were detected during the night time. Diel presence pattern was prominent in March and April. In spring, the cetaceans were concentrated in one specific direction from the fixed monitoring system. In contrast, they were found in all directions for the rest of the year. Short range sonar (inter-click intervals (ICIs) less than 50 ms) was commonly detected in spring. During the rest of the year ICIs could reach up to 150 ms. All these findings suggest that they were feeding or socializing in spring and mostly travelling in the other seasons. It is well known that pelagic fish such as sprat and bluefish start their migration from the Aegean Sea to the Black Sea in spring. This study suggests that the cetaceans use the middle part of the Strait for feeding on the pelagic fish in spring when the fish migration has just started.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-445-C2-448
Author(s):  
D. Barb ◽  
L. Diamandescu ◽  
M. Morariu ◽  
I. I. Georgescu

2020 ◽  
Vol 650 ◽  
pp. 289-308 ◽  
Author(s):  
V Raya ◽  
J Salat ◽  
A Sabatés

This work develops a new method, the box-balance model (BBM), to assess the role of hydrodynamic structures in the survival of fish larvae. The BBM was applied in the northwest Mediterranean to field data, on 2 small pelagic fish species whose larvae coexist in summer: Engraulis encrasicolus, a dominant species, and Sardinella aurita, which is expanding northwards in relation to sea warming. The BBM allows one to quantify the contribution of circulation, with significant mesoscale activity, to the survival of fish larvae, clearly separating the effect of transport from biological factors. It is based on comparing the larval abundances at age found in local target areas, associated with the mesoscale structures (boxes), to those predicted by the overall mortality rate of the population in the region. The application of the BBM reveals that dispersion/retention by hydrodynamic structures favours the survival of E. encrasicolus larvae. In addition, since larval growth and mortality rates of the species are required parameters for application of the BBM, we present their estimates for S. aurita in the region for the first time. Although growth and mortality rates found for S. aurita are both higher than for E. encrasicolus, their combined effect confers a lower survival to S. aurita larvae. Thus, although the warming trend in the region would contribute to the expansion of the fast-growing species S. aurita, we can confirm that E. encrasicolus is well established, with a better adapted survival strategy.


2017 ◽  
Vol 569 ◽  
pp. 187-203 ◽  
Author(s):  
AM McInnes ◽  
PG Ryan ◽  
M Lacerda ◽  
J Deshayes ◽  
WS Goschen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document