passive acoustic monitoring
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 123)

H-INDEX

21
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260485
Author(s):  
Manuel Castellote ◽  
Aran Mooney ◽  
Russel Andrews ◽  
Stacy Deruiter ◽  
Wu-Jung Lee ◽  
...  

Cook Inlet, Alaska, is home to an endangered and declining population of 279 belugas (Delphinapterus leucas). Recovery efforts highlight a paucity of basic ecological knowledge, impeding the correct assessment of threats and the development of recovery actions. In particular, information on diet and foraging habitat is very limited for this population. Passive acoustic monitoring has proven to be an efficient approach to monitor beluga distribution and seasonal occurrence. Identifying acoustic foraging behavior could help address the current gap in information on diet and foraging habitat. To address this conservation challenge, eight belugas from a comparative, healthy population in Bristol Bay, Alaska, were instrumented with a multi-sensor tag (DTAG), a satellite tag, and a stomach temperature transmitter in August 2014 and May 2016. DTAG deployments provided 129.6 hours of data including foraging and social behavioral states. A total of 68 echolocation click trains ending in terminal buzzes were identified during successful prey chasing and capture, as well as during social interactions. Of these, 37 click trains were successfully processed to measure inter-click intervals (ICI) and ICI trend in their buzzing section. Terminal buzzes with short ICI (minimum ICI <8.98 ms) and consistently decreasing ICI trend (ICI increment range <1.49 ms) were exclusively associated with feeding behavior. This dual metric was applied to acoustic data from one acoustic mooring within the Cook Inlet beluga critical habitat as an example of the application of detecting feeding in long-term passive acoustic monitoring data. This approach allowed description of the relationship between beluga presence, feeding occurrence, and the timing of spawning runs by different species of anadromous fish. Results reflected a clear preference for the Susitna River delta during eulachon (Thaleichthys pacificus), Chinook (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha), and coho (Oncorhynchus kisutch) salmon spawning run periods, with increased feeding occurrence at the peak of the Chinook and pink salmon runs.


2021 ◽  
Author(s):  
Patrick Wolff ◽  
Brett DeGregorio ◽  
Aaron Rice

The management and recovery of threatened and endangered amphibians on Department of Defense (DoD) lands relies on an understanding of their distribution and abundance. Fortunately, most anuran species can be surveyed acoustically using vocalizations during the breeding season. This work demonstrated the use of subsurface passive acoustic monitoring (SPAM) to survey for rare underwater-calling, at-risk anuran species on DoD installations. We evaluated the performance of SPAM relative to traditional passive acoustic monitoring (PAM) (microphone) and human manual calling survey (MCS) methods. Results showed that SPAM outperformed PAM and MCS in validation experiments where calls were generated underwater; SPAM was less successful than PAM and MCS in the field demonstration. Most leopard frog calls were apparently produced in air despite previous reports of extensive underwater-calling behavior. This project highlights how acoustic information can help address a data gap in the ecology of at-risk species, which can help refine future survey methodology and management efforts. Ultimately, the utility of SPAM for underwater-calling species will depend on the focal species, the landscape where it occurs, and technological considerations available to the surveyor. SPAM is more expensive than traditional methods but, in some situations, may be the only way to effectively detect species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Samara M. Haver ◽  
Jeffrey D. Adams ◽  
Leila T. Hatch ◽  
Sofie M. Van Parijs ◽  
Robert P. Dziak ◽  
...  

Chronic low-frequency noise from commercial shipping is a worldwide threat to marine animals that rely on sound for essential life functions. Although the U.S. National Oceanic and Atmospheric Administration recognizes the potential negative impacts of shipping noise in marine environments, there are currently no standard metrics to monitor and quantify shipping noise in U.S. marine waters. However, one-third octave band acoustic measurements centered at 63 and 125 Hz are used as international (European Union Marine Strategy Framework Directive) indicators for underwater ambient noise levels driven by shipping activity. We apply these metrics to passive acoustic monitoring data collected over 20 months in 2016–2017 at five dispersed sites throughout the U.S. Exclusive Economic Zone: Alaskan Arctic, Hawaii, Gulf of Mexico, Northeast Canyons and Seamounts Marine National Monument (Northwest Atlantic), and Cordell Bank National Marine Sanctuary (Northeast Pacific). To verify the relationship between shipping activity and underwater sound levels, vessel movement data from the Automatic Identification System (AIS) were paired to each passive acoustic monitoring site. Daily average sound levels were consistently near to or higher than 100 dB re 1 μPa in both the 63 and 125 Hz one-third octave bands at sites with high levels of shipping traffic (Gulf of Mexico, Northeast Canyons and Seamounts, and Cordell Bank). Where cargo vessels were less common (the Arctic and Hawaii), daily average sound levels were comparatively lower. Specifically, sound levels were ∼20 dB lower year-round in Hawaii and ∼10-20 dB lower in the Alaskan Arctic, depending on the season. Although these band-level measurements can only generally facilitate differentiation of sound sources, these results demonstrate that international acoustic indicators of commercial shipping can be applied to data collected in U.S. waters as a unified metric to approximate the influence of shipping as a driver of ambient noise levels, provide critical information to managers and policy makers about the status of marine environments, and to identify places and times for more detailed investigation regarding environmental impacts.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 566
Author(s):  
Leandro A. Do Nascimento ◽  
Cristian Pérez-Granados ◽  
Karen H. Beard

Nighttime studies are underrepresented in ecological research. Even well-known behaviors, such as the loud call of howler monkeys, are rarely studied at night. Our goal was to help fill this knowledge gap by studying the 24 h vocal behavior of the Guianan red howler monkey (Alouatta macconnelli) and to compare the acoustic structures of howling bouts made during the day to those made at night. We used passive acoustic monitoring coupled with automatic acoustic detection to study three groups of howlers over three months in the Viruá National Park, Roraima, Brazil. The automatic classifier we built detected 171 howling bouts with a 42% recall rate and 100% precision. Though primarily diurnal, howlers vocalized mainly at night. Greater vocal activity before nautical twilight might be associated with territorial and resource defense behaviors, with howlers calling from roosting sites before starting their daily routines. We also found that during the day, howling bouts were longer and had lower harmonic-to-noise ratios, lower frequencies, and more symmetric energy distributions than bouts at night. Our study adds to growing evidence that passive acoustic monitoring and automatic acoustic detection can be used to study primates and improve our understanding of their vocal behavior.


Ecosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Rebecca V. Van Hoeck ◽  
Avery B. Paxton ◽  
DelWayne R. Bohnenstiehl ◽  
J. Christopher Taylor ◽  
F. Joel Fodrie ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah J. Myers ◽  
Daniel W. Olsen ◽  
Craig O. Matkin ◽  
Lara A. Horstmann ◽  
Brenda Konar

AbstractKiller whales (Orcinus orca) are top predators throughout the world’s oceans. In the North Pacific, the species is divided into three ecotypes—resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)—that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species.


2021 ◽  
Author(s):  
Sean Perry ◽  
Vaibhav Tiwari ◽  
Nishant Balaji ◽  
Erika Joun ◽  
Jacob Ayers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document