Temperature-dependent structural and transport properties of liquid transition metals

2010 ◽  
Vol 16 (6) ◽  
pp. 921-929 ◽  
Author(s):  
Sui Yang ◽  
Xuping Su ◽  
Jianhua Wang ◽  
Nai-Yong Tang
2013 ◽  
Vol 209 ◽  
pp. 147-150
Author(s):  
Pankajsinh B. Thakor ◽  
Yogeshkumar A. Sonvane ◽  
Ashvin R. Jani

Atomic transport properties like self diffusion coefficient (D), viscosity coefficient (η) of 3d liquid transition metals are studied. Here we have applied our own model potential to describe electron ion interaction with different reference system like Percus - Yevick Hard Sphere (PYHS), One Component Plasma (OCP) and Charge Hard Sphere (CHS) systems. We have investigated the effect of different correction function like Hartree (H), Vashishta-Singwi (VS), Hubbard-Sham (HS), Sarkar et al (S), Ichimaru-Utsumi(IU), Taylor (T) and Farid et al (F) on atomic transport properties. The proper choice of the model potential alongwith the local field correction function and reference system plays a vital role in the study of the atomic transport properties of 3d liquid transition metals.


1971 ◽  
Vol 35 (2) ◽  
pp. 57-58 ◽  
Author(s):  
R Evans ◽  
D.A Greenwood ◽  
P Lloyd

2015 ◽  
Vol 8 (2) ◽  
pp. 2084-2093 ◽  
Author(s):  
PROLOY TARAN DAS ◽  
Arun Kumar Nigam ◽  
Tapan Kumar Nath

Nano-dimensional effects on electronic-, magneto-transport properties of granular ferromagnetic insulating (FMI) Pr0.8Sr0.2MnO3 (PSMO) manganite (down to 40 nm) have been investigated in details. From the electronic and magnetic transport properties, a metallic state has been observed in grain size modulation by suppressing the ferromagnetic insulating state of PSMO bulk system. A distinct metal-insulator transition (MIT) temperature around 150 K has been observed in all nanometric samples. The observed insulator to metallic transition with size reduction can be explained with surface polaron breaking model, originates due to enhanced grain surface disorder. This proposed phenomenological polaronic model plays a significant role to understand the polaronic destabilization process on the grain surface regime of these phase separated nano-mangnatie systems. Temperature dependent resistivity and magnetoresistance data in presence of external magnetic fields are investigated in details with various compatible models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oliver Hart ◽  
Yuan Wan ◽  
Claudio Castelnovo

AbstractRealistic model Hamiltonians for quantum spin liquids frequently exhibit a large separation of energy scales between their elementary excitations. At intermediate, experimentally relevant temperatures, some excitations are sparse and hop coherently, whereas others are thermally incoherent and dense. Here, we study the interplay of two such species of quasiparticle, dubbed spinons and visons, which are subject to nontrivial mutual statistics – one of the hallmarks of quantum spin liquid behaviour. Our results for $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquids show an intriguing feedback mechanism, akin to the Nagaoka effect, whereby spinons become localised on temperature-dependent patches of expelled visons. This phenomenon has important consequences for the thermodynamic and transport properties of the system, as well as for its response to quenches in temperature. We argue that these effects can be measured in experiments and may provide viable avenues for obtaining signatures of quantum spin liquid behaviour.


Sign in / Sign up

Export Citation Format

Share Document