bulk system
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Papiya Dattaray ◽  
Deepak Ramasubramanian ◽  
Parag Mitra ◽  
Jens C. Boemer ◽  
Mobolaji Bello ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (20) ◽  
pp. 11050
Author(s):  
Horacio Serna ◽  
Wojciech T. Góźdź ◽  
Eva G. Noya

Systems with short-range attractive and long-range repulsive interactions can form periodic modulated phases at low temperatures, such as cluster-crystal, hexagonal, lamellar and bicontinuous gyroid phases. These periodic microphases should be stable regardless of the physical origin of the interactions. However, they have not yet been experimentally observed in colloidal systems, where, in principle, the interactions can be tuned by modifying the colloidal solution. Our goal is to investigate whether the formation of some of these periodic microphases can be promoted by confinement in narrow slit pores. By performing simulations of a simple model with competing interactions, we find that both the cluster-crystal and lamellar phases can be stable up to higher temperatures than in the bulk system, whereas the hexagonal phase is destabilised at temperatures somewhat lower than in bulk. Besides, we observed that the internal ordering of the lamellar phase can be modified by changing the pore width. Interestingly, for sufficiently wide pores to host three lamellae, there is a range of temperatures for which the two lamellae close to the walls are internally ordered, whereas the one at the centre of the pore remains internally disordered. We also find that particle diffusion under confinement exhibits a complex dependence with the pore width and with the density, obtaining larger and smaller values of the diffusion coefficient than in the corresponding bulk system.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1584
Author(s):  
Alexander Zaitsev ◽  
Nataliya Arutyunyan

Low-carbon Ti-Mo microalloyed steels represent a new generation of high strength steels for automobile sheet. Excellent indicators of difficult-to-combine technological, strength, and other service properties are achieved due to the superposition of a dispersed ferrite matrix and a bulk system of nanoscale carbide precipitates. Recently, developments are underway to optimize thermo-deformation processing for the most efficient use of phase precipitates. The review summarizes and analyzes the results of studies of mechanical properties depending on the chemical composition and parameters of hot deformation of low-carbon Ti-Mo microalloyed steels. Particular attention is paid to the features of the formation and the influence of various types of phase precipitates and the dispersion of the microstructure on mechanical properties. The advantages of Ti-Mo microalloying system and the tasks requiring further solution are shown.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Ran Li ◽  
Jin Wang ◽  
Yong-Qiang Wang ◽  
Hongbao Zhang

Abstract We study the dynamics of the holographic s-wave superconductors described by the Einstein-Maxwell-complex scalar field theory with a negative cosmological constant. If the eigenfunction of the linearized equation of motion of the scalar field in the planar RNAdS black hole background is chosen as the initial data, the bulk system will evolve to the intermediate state that corresponds to the excited state superconductor on the boundary. The process can be regarded as the non-equilibrium condensation process of the excited state of holographic superconductor. When the linear superposition of the eigenfunctions is chosen as the initial data, the system will go through a series of the intermediate states corresponding to different overtone numbers, which can be regarded as the dynamical transition process between the excited states of holographic superconductor. Because the intermediate states are metastable, the bulk system eventually evolves to the stationary state that corresponds the ground state of the holographic superconductor. We also provide a global and physical picture of the evolution dynamics of the black hole and the corresponding superconducting phase transition from the funneled landscape view, quantifying the weights of the states and characterizing the transitions and cascades towards the ground state.


2020 ◽  
Vol 35 (5) ◽  
pp. 3516-3528
Author(s):  
Jin Zhao ◽  
Hongtao Wang ◽  
Qiuwei Wu ◽  
Nikos D. Hatziargyriou ◽  
Feifan Shen
Keyword(s):  

2020 ◽  
Author(s):  
James Dawson ◽  
Saiful Islam

<div>The discovery of the lithium superionic conductor Li10GeP2S12 (LGPS) has led to significant research activity on solid electrolytes for high-performance and safe solid-state batteries. LGPS exhibits a remarkably high room-temperature Li-ion conductivity of 12 mS/cm, comparable to</div><div>that of the liquid electrolytes used in current Li-ion batteries. Here, we predict that nanosizing of LGPS can be used to further enhance its already outstanding Li-ion conductivity. By utilizing state-of-the-art nanoscale molecular dynamics techniques, we are able to simulate the Li-ion conductivities of nanocrystalline LGPS systems with average grain sizes from 10 to 2 nm. Our results reveal that the Li-ion conductivity of LGPS increases with decreasing grain volume. For the smallest nanometric grain size, the Li-ion conductivity at room temperature is three times higher that of the bulk system. These findings reveal that nanosizing LGPS and related solid electrolytes could be an effective approach for enhancing their Li-ion conductivity.</div>


2020 ◽  
Author(s):  
James Dawson ◽  
Saiful Islam

<div>The discovery of the lithium superionic conductor Li10GeP2S12 (LGPS) has led to significant research activity on solid electrolytes for high-performance and safe solid-state batteries. LGPS exhibits a remarkably high room-temperature Li-ion conductivity of 12 mS/cm, comparable to</div><div>that of the liquid electrolytes used in current Li-ion batteries. Here, we predict that nanosizing of LGPS can be used to further enhance its already outstanding Li-ion conductivity. By utilizing state-of-the-art nanoscale molecular dynamics techniques, we are able to simulate the Li-ion conductivities of nanocrystalline LGPS systems with average grain sizes from 10 to 2 nm. Our results reveal that the Li-ion conductivity of LGPS increases with decreasing grain volume. For the smallest nanometric grain size, the Li-ion conductivity at room temperature is three times higher that of the bulk system. These findings reveal that nanosizing LGPS and related solid electrolytes could be an effective approach for enhancing their Li-ion conductivity.</div>


Nanoscale ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 6691-6698 ◽  
Author(s):  
Noriyoshi Arai ◽  
Yusei Kobayashi ◽  
Kenji Yasuoka

The self-assembly was found to be more favoured in a vesicle-cell membrane, rather than in the bulk system. The result will contribute to a better understanding of the origin of life on the primitive Earth.


Sign in / Sign up

Export Citation Format

Share Document