Cast Aluminum Surface Reinforced with Carbon Nanotube via Solubilization Treatment

Author(s):  
Paulo R. O. Brito ◽  
Cristhian R. L. Loayza ◽  
Mário E. S. Sousa ◽  
Eduardo M. Braga ◽  
Rômulo S. Angélica ◽  
...  
Author(s):  
Nikolay F. Kolenchin ◽  
Denis V. Denisenko

This article discusses the ways of intensification of the oxidation process with the formation of surface properties necessary to increase the service life of one of the parts of an internal combustion engine - a cylinder made of cast aluminum alloy. A brief overview of existing technologies for hardening the aluminum surface is presented. Environmentally friendly options are proposed for using the potential of processes that have accumulated energy within an electrolytic cell by activating the interelectrode gap and forming an oxide with desired properties. The main difference from the existing model approaches of oxide formation lies in the parallel excitation of the main participant in the process, oxygen, in order to dominate it over other, oxygen-containing donors. Ways of using the energy of cavitation phenomena due to acoustic resonance in an electrolytic solution are proposed. Redistribution of the field potential by replacing a flat cathode with a pointed one changed the conductivity conditions in the interelectrode gap as a result of the electroconvective action. The structure of the oxide layer, phase changes, and physical properties confirming the originality of oxide coatings have been investigated.


2003 ◽  
Vol 789 ◽  
Author(s):  
Pawel Pomorski ◽  
Lars Pastewka ◽  
Christopher Roland ◽  
Hong Guo ◽  
Jian Wang

ABSTRACTAlthough it has long been known that the classical notions of capacitance are altered at the nanoscale, few first principles calculations of these properties exist for real material systems. With a recently developed ab initio formalism, which combines nonequilibrium Greens function techniques with real-space density functional calculations, we have investigated charging effects for carbon nanotube systems, which are described by the capacitance coefficients. Specifically, the capacitance matrix of two nested nanotube armchair nanotubes, the insertion of one nanotube into another, and the properties of a nanotube acting as a probe over a flat aluminum surface were considered.


2014 ◽  
Vol 348 ◽  
pp. 20-26
Author(s):  
I. Pranoto ◽  
C. Yang ◽  
L.X. Zheng ◽  
K.C. Leong ◽  
P.K. Chan

This paper presents an experimental study of flow boiling heat transfer from carbon nanotube (CNT) structures in a two-phase cooling facility. Multi-walled CNT (MWCNT) structures of dimensions 80 mm × 60 mm were applied to a horizontal flow boiling channel. Two CNT structures with different properties viz. NC-3100 and MERCSD were tested with a dielectric liquid FC-72. The height of the CNT structures was fixed at 37.5 μm and tests were conducted at coolant mass fluxes of 35, 50, and 65 kg/m2·s under saturated flow boiling conditions. The experimental results show that the CNT structures enhance the boiling heat transfer coefficients by up to 1.6 times compared to the smooth aluminum surface. The results also show that the CNT structures increase significantly the Critical Heat Flux (CHF) of the smooth aluminum surface from 66.7 W/cm2 to 100 W/cm2.


Author(s):  
H.-S. Philip Wong ◽  
Deji Akinwande

Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
NC Habel ◽  
S Hirn ◽  
F Tian ◽  
O Eickelberg ◽  
T Stoeger

Sign in / Sign up

Export Citation Format

Share Document