Hold Time-Low Cycle Fatigue Behavior of Nickel Based Hastelloy X at Elevated Temperatures

Author(s):  
Donghyun Yoon ◽  
Inkang Heo ◽  
Jaehoon Kim ◽  
Sungyong Chang ◽  
Sungho Chang
2013 ◽  
Vol 794 ◽  
pp. 441-448 ◽  
Author(s):  
G.V. Prasad Reddy ◽  
R. Sandhya ◽  
M.D. Mathew ◽  
S. Sankaran

Low cycle fatigue (LCF) and Creep-fatigue interaction (CFI) behavior of 316LN austenitic stainless steel alloyed with 0.07, 0.11, 0.14, .22 wt.% nitrogen is briefly discussed in this paper. The strain-life fatigue behavior of these steels is found to be dictated by not only cyclic plasticity but also by dynamic strain aging (DSA) and secondary cyclic hardening (SCH). The influence of the above phenomenon on cyclic stress response and fatigue life is evaluated in the present study. The above mentioned steels exhibited both single-and dual-slope strain-life fatigue behavior depending on the test temperatures. Concomitant dislocation substructural evolution has revealed transition in substructures from planar to cell structures justifying the change in slope. The beneficial effect of nitrogen on LCF life is observed to be maximum for 316LN with nitrogen in the range 0.11 - 0.14 wt.%, for the tests conducted over a range of temperatures (773-873 K) and at ±0.4 and 0.6 % strain amplitudes at a strain rate of 3*10-3 s-1. A decrease in the applied strain rate from 3*10-3 s-1 to 3*10-5 s-1 or increase in the test temperature from 773 to 873 K led to a peak in the LCF life at a nitrogen content of 0.07 wt.%. Similar results are obtained in CFI tests conducted with tensile hold periods of 13 and 30 minutes. Fractography studies of low strain rate and hold time tested specimens revealed extensive intergranular cracking.


2005 ◽  
Vol 409 (1-2) ◽  
pp. 282-291 ◽  
Author(s):  
Y.L. Lu ◽  
L.J. Chen ◽  
G.Y. Wang ◽  
M.L. Benson ◽  
P.K. Liaw ◽  
...  

1992 ◽  
Vol 32 (4) ◽  
pp. 545-552 ◽  
Author(s):  
Sehwan Chi ◽  
Masahide Suzuki ◽  
Hiroshi Nishi ◽  
Motokuni Eto ◽  
Insup Kim

2020 ◽  
Vol 139 ◽  
pp. 105803
Author(s):  
A.H. Jabbari ◽  
M. Sedighi ◽  
H. Jahed ◽  
C. Sommitsch

2020 ◽  
Vol 793 ◽  
pp. 139890
Author(s):  
A.H. Jabbari ◽  
A. Shafiee Sabet ◽  
M. Sedighi ◽  
H. Jahed ◽  
C. Sommitsch

Sign in / Sign up

Export Citation Format

Share Document