Exoedaenodus schaubi Hürzeler, 1944 (Dimylidae, Mammalia) from the late Oligocene of Enspel/Germany

Author(s):  
Achim H. Schwermann
Keyword(s):  
2020 ◽  
Author(s):  
Xin Wang

Detailed description of sample analyses, geological setting, model simulation, and the data presented in the paper.<br>


2021 ◽  
pp. 1-26
Author(s):  
Andrew A van de Weerd ◽  
Hans de Bruijn ◽  
Wilma Wessels
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Santiago Moliner-Aznar ◽  
Manuel Martín-Martín ◽  
Tomás Rodríguez-Estrella ◽  
Gregorio Romero-Sánchez

The Cenozoic Malaguide Basin from Sierra Espuña (Internal Betic Zone, S Spain) due to the quality of outcropping, areal representation, and continuity in the sedimentation can be considered a key-basin. In the last 30 years, a large number of studies with very different methodological approaches have been done in the area. Models indicate an evolution from passive margin to wedge-top basin from Late Cretaceous to Early Miocene. Sedimentation changes from limestone platforms with scarce terrigenous inputs, during the Paleocene to Early Oligocene, to the deep basin with huge supplies of turbidite sandstones and conglomerates during the Late Oligocene to Early Miocene. The area now appears structured as an antiformal stack with evidence of synsedimentary tectonics. The Cenozoic tectono-sedimentary basin evolution is related to three phases: (1) flexural tectonics during most of the Paleogene times to create the basin; (2) fault and fold compartmentation of the basin with the creation of structural highs and subsiding areas related to blind-fault-propagation folds, deforming the basin from south to north during Late Oligocene to Early Aquitanian times; (3) thin-skin thrusting tectonics when the basin began to be eroded during the Late Aquitanian-Burdigalian. In recent times some works on the geological heritage of the area have been performed trying to diffuse different geological aspects of the sector to the general public. A review of the studies performed and the revisiting of the area allow proposing different key-outcrops to follow the tectono-sedimentary evolution of the Cenozoic basin from this area. Eight sites of geological interest have been selected (Cretaceous-Cenozoic boundary, Paleocene Mula Fm, Lower Eocene Espuña-Valdelaparra Fms, Middle Eocene Malvariche-Cánovas Fms, Lowermost Oligocene As Fm, Upper Oligocene-Lower Aquitanian Bosque Fm, Upper Oligocene-Aquitanian Río Pliego Fm, Burdigalian El Niño Fm) and an evaluation has been performed to obtain four parameters: the scientific value, the educational and touristic potential, and the degradation risk. The firsts three parameters obtained values above 50 being considered of “high” or “very high” interest (“very high” in most of the cases). The last parameter shows always values below 50 indicating a “moderate” or “low” risk of degradation. The obtained values allow us considering the tectono-sedimentary evolution of this basin worthy of being proposed as a geological heritage.


Author(s):  
Ümitcan Erbil ◽  
Aral I. Okay ◽  
Aynur Hakyemez

AbstractLate Cenozoic was a period of large-scale extension in the Aegean. The extension is mainly recorded in the metamorphic core complexes with little data from the sedimentary sequences. The exception is the Thrace Basin in the northern Aegean, which has a continuous record of Middle Eocene to Oligocene marine sedimentation. In the Thrace Basin, the Late Oligocene–Early Miocene was characterized by north-northwest (N25°W) shortening leading to the termination of sedimentation and formation of large-scale folds. We studied the stratigraphy and structure of one of these folds, the Korudağ anticline. The Korudağ anticline has formed in the uppermost Eocene–Lower Oligocene siliciclastic turbidites with Early Oligocene (31.6 Ma zircon U–Pb age) acidic tuff beds. The turbidites are underlain by a thin sequence of Upper Eocene pelagic limestone. The Korudağ anticline is an east-northeast (N65°E) trending fault-propagation fold, 9 km wide and 22 km long and with a subhorizontal fold axis. It is asymmetric with shallowly-dipping northern and steeply-dipping southern limbs. Its geometry indicates about 1 km of shortening in a N25°W direction. The folded strata are unconformably overlain by Middle Miocene continental sandstones, which constrain the age of folding. The Korudağ anticline and other large folds in the Thrace Basin predate the inception of the North Anatolian Fault (NAF) by at least 12 myr. The Late Oligocene–Early Miocene (28–17 Ma) shortening in the Thrace Basin and elsewhere in the Balkans forms an interlude between two extensional periods, and is probably linked to changes in the subduction dynamics along the Hellenic trench.


Paleobiology ◽  
2021 ◽  
pp. 1-21
Author(s):  
Mariana Viglino ◽  
Maximiliano Gaetán ◽  
Mónica R. Buono ◽  
R. Ewan Fordyce ◽  
Travis Park

Abstract The inner ear of the two higher clades of modern cetaceans (Neoceti) is highly adapted for hearing infrasonic (mysticetes) or ultrasonic (odontocetes) frequencies. Within odontocetes, Platanistoidea comprises a single extant riverine representative, Platanista gangetica, and a diversity of mainly extinct marine species from the late Oligocene onward. Recent studies drawing on features including the disparate tympanoperiotic have not yet provided a consensus phylogenetic hypothesis for platanistoids. Further, cochlear morphology and evolutionary patterns have never been reported. Here, we describe for the first time the inner ear morphology of late Oligocene–early Miocene extinct marine platanistoids and their evolutionary patterns. We initially hypothesized that extinct marine platanistoids lacked a specialized inner ear like P. gangetica and thus, their morphology and inferred hearing abilities were more similar to those of pelagic odontocetes. Our results reveal there is no “typical” platanistoid cochlear type, as the group displays a disparate range of cochlear anatomies, but all are consistent with high-frequency hearing. Stem odontocete Prosqualodon australis and platanistoid Otekaikea huata present a tympanal recess in their cochlea, of yet uncertain function in the hearing mechanism in cetaceans. The more basal morphology of Aondelphis talen indicates it had lower high-frequency hearing than other platanistoids. Finally, Platanista has the most derived cochlear morphology, adding to evidence that it is an outlier within the group and consistent with a >9-Myr-long separation from its sister genus Zarhachis. The evolution of a singular sound production morphology within Platanistidae may have facilitated the survival of Platanista to the present day.


Sign in / Sign up

Export Citation Format

Share Document