New Results on Finite-time Stabilization for Stochastic Systems with Time-varying Delay

2018 ◽  
Vol 16 (2) ◽  
pp. 649-658 ◽  
Author(s):  
Lihua Zhang ◽  
Wenhai Qi ◽  
Yonggui Kao ◽  
Xianwen Gao ◽  
Longjiang Zhao
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guoqi Ma ◽  
Linlin Qin ◽  
Xinghua Liu ◽  
Gang Wu

This paper is concerned with the problem of observed-based event-triggered control for switched linear systems with time-varying delay and exogenous disturbance. First by employing a state observer, an observer-based event-triggered controller is designed to guarantee the finite-time boundedness and finite-time stabilization of the resulting dynamic augmented closed-loop system. Then based on the Lyapunov-like function method and the average dwell time technique, some sufficient conditions are given to ensure the finite-time boundedness and finite-time stabilization, respectively. Furthermore, the lower bound of the minimum interevent interval is proved to be positive, which thus excludes the Zeno behavior of sampling. A numerical example is finally exploited to verify the effectiveness and potential of the achieved control scheme.


2021 ◽  
Vol 20 ◽  
pp. 244-251
Author(s):  
Xinyue Tang ◽  
Yali Dong ◽  
Meng Liu

This paper deals with the problems of finite-time stochastic stability and stabilization for discrete-time stochastic systems with parametric uncertainties and time-varying delay. Using the Lyapunov-Krasovskii functional method, some sufficient conditions of finite-time stochastic stability for a class of discrete-time stochastic uncertain systems are established in term of matrix inequalities. Then, a new criterion is proposed to ensure the closed-loop system is finite-time stochastically stable. The controller gain is designed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Ge Li ◽  
Yaqiong Li ◽  
Zhaohui Yuan

In this paper, the finite-time stabilization problem for memristive Cohen-Grossberg neural networks with time-varying delay is discussed. By using the novel fixed point theory of set-valued maps, we establish the existence theorem of equilibrium point. In order to realize the finite-time stabilization, two different kinds of discontinuous state feedback controllers whether including time-varying delay are designed. Based on the extended Filippov framework and two different kinds of methods whether using finite-time stability theory, some novel sufficient conditions and the upper bound of the settling time for finite-time stabilization are proposed. Finally, two numerical examples are given to demonstrate the validity of theoretical results.


Sign in / Sign up

Export Citation Format

Share Document