Adaptive Switch Image-based Visual Servoing for Industrial Robots

2019 ◽  
Vol 18 (5) ◽  
pp. 1324-1334 ◽  
Author(s):  
Ahmad Ghasemi ◽  
Pengcheng Li ◽  
Wen-Fang Xie
2013 ◽  
Vol 196 ◽  
pp. 62-73 ◽  
Author(s):  
Piotr Kohut

In the paper an application of vision methods and algorithms in various domains that contribute to mechatronics is presented. Regarding mechatronics devices and machines as robots, a vision system employed for a testing station simulating an industrial assembly line is discussed. Some numerical aspects concerning image pre-processing, analysis and geometrical transformations commonly used in robotics were introduced. To accomplish an effective investigation, the developed methodology and algorithms were implemented and verified on an experimental setup composed of two industrial robots and automation devices cooperating with two various vision systems. In the case of underwater robots for tank inspection, image pre-processing and analysis algorithms for the robot's position estimation, an image scale calculation and wall crack detection were investigated. An active vibration control system is treated as a mechatronic device which contains mechanical parts, electronics and software. In this example, a visual servoing architecture based on image features for controlling an active vibration control system was examined. For an effective investigation and synthesis of visual servoing algorithms, a MATLAB/Simulink/dSPACE hardware–software environment was employed. A vision system was used to analyze vibration amplitude of the vibro-isolation mass of the active suspension system and to provide a feedback control signal. The connection of 3D vision techniques with modal analysis was shown. Within the confines of the project a methodology for amplitude of vibration measurement and a software tool for modal analysis realization based on visual data were developed. The 3D measurements and structure of the construction were obtained by application and development of passive 3-D vision techniques. From this area, ‘structure from motion’ techniques were developed. In the experimental research, a mechatronic test stand was designed and manufactured enabling automatic two-axis control of a camera. A frame structure was built, in which a guiding-rail system was mounted enabling straight-line motion of a camera. Additionally, a system realizing rotational motion of a camera was built in. To control the experiment stand, software was created enabling the combination of the hardware-software part of the stand with the software part of a vision system. A tool was developed for the purpose of modal analysis and estimation of the quantities characterizing dynamic properties of the structure based on vision signals. As a conclusion, the presented, implemented and tested vision methods in various hardware-software programming platforms are discussed


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Megha G. Krishnan ◽  
Abhilash T. Vijayan ◽  
Ashok S.

Purpose Real-time implementation of sophisticated algorithms on robotic systems demands a rewarding interface between hardware and software components. Individual robot manufacturers have dedicated controllers and languages. However, robot operation would require either the knowledge of additional software or expensive add-on installations for effective communication between the robot controller and the computation software. This paper aims to present a novel method of interfacing the commercial robot controllers with most widely used simulation platform, e.g. MATLAB in real-time with a demonstration of visual predictive controller. Design/methodology/approach A remote personal computer (PC), running MATLAB, is connected with the IRC5 controller of an ABB robotic arm through the File Transfer Protocol (FTP). FTP server on the IRC5 responds to a request from an FTP client (MATLAB) on a remote computer. MATLAB provides the basic platform for programming and control algorithm development. The controlled output is transferred to the robot controller through Ethernet port as files and, thereby, the proposed scheme ensures connection and control of the robot using the control algorithms developed by the researchers without the additional cost of buying add-on packages or mastering vendor-specific programming languages. Findings New control strategies and contrivances can be developed with numerous conditions and constraints in simulation platforms. When the results are to be implemented in real-time systems, the proposed method helps to establish a simple, fast and cost-effective communication with commercial robot controllers for validating the real-time performance of the developed control algorithm. Practical implications The proposed method is used for real-time implementation of visual servo control with predictive controller, for accurate pick-and-place application with different initial conditions. The same strategy has been proven effective in supervisory control using two cameras and artificial neural network-based visual control of robotic manipulators. Originality/value This paper elaborates a real-time example using visual servoing for researchers working with industrial robots, enabling them to understand and explore the possibilities of robot communication.


2019 ◽  
Vol 50 (2) ◽  
pp. 432-449 ◽  
Author(s):  
Pau Muñoz-Benavent ◽  
J. Ernesto Solanes ◽  
Luis Gracia ◽  
Josep Tornero

Author(s):  
Ratchatin Chancharoen ◽  
Viboon Sangveraphunsiri ◽  
Korakoj Sanguanpiyapan ◽  
Pavee Chatchaisucha ◽  
Pongsith Dharachantra ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775385 ◽  
Author(s):  
Che-Liang Li ◽  
Ming-Yang Cheng ◽  
Wei-Che Chang

Image-based visual servoing (IBVS) has increasingly gained popularity and has been adopted in applications such as industrial robots, quadrotors, and unmanned aerial vehicles. When exploiting IBVS, the image feature velocity command obtained from the visual loop controller is converted to the velocity command of the workspace through the interaction matrix so as to converge image feature error. However, issues such as the noise/disturbance arising from image processing and the smoothness of image feature command are often overlooked in the design of the visual loop controller, especially in a contour following task. In particular, noise in the image feature will contaminate the image feedback signal so that the visual loop performance can be substantially affected. To cope with the aforementioned problem, this article employs the sliding mode controller to suppress the adverse effects caused by image feature noise. Moreover, by exploiting the idea of motion planning, a parametric curve interpolator is developed to generate smooth image feature commands. In addition, a depth observer is also designed to provide the depth information essential in the implementation of the interaction matrix. In order to assess the feasibility of the proposed approach, a two-degrees-of-freedom planar robot that employs an IBVS structure and an eye-to-hand camera configuration is used to conduct a contour following task. Contour following results verify the effectiveness of the proposed approach.


Author(s):  
Marek Vagas

Urgency of the research. Automated workplaces are growing up in present, especially with implementation of industrial robots with feasibility of various dispositions, where safety and risk assessment is considered as most important issues. Target setting. The protection of workers must be at the first place, therefore safety and risk assessment at automated workplaces is most important problematic, which had presented in this article Actual scientific researches and issues analysis. Actual research is much more focused at standard workplaces without industrial robots. So, missing of information from the field of automated workplaces in connection with various dispositions can be considered as added value of article. Uninvestigated parts of general matters defining. Despite to lot of general safety instructions in this area, still is missed clear view only at automated workplace with industrial robots. The research objective. The aim of article is to provide general instructions directly from the field of automated workplaces The statement of basic materials. For success realization of automated workplace is good to have a helping hand and orientation requirements needed for risk assessment at the workplace. Conclusions. The results published in this article increase the awareness and information of such automated workplaces, together with industrial robots. In addition, presented general steps and requirements helps persons for better realization of these types of workplaces, where major role takes an industrial robot. Our proposed solution can be considered as relevant base for risk assessment such workplaces with safety fences or light barriers.


Author(s):  
V.G. Farhadov ◽  
◽  
A.A. Babaeva ◽  
A.T. Mamedova ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document