Udwadia-Kalaba Equation Based Adaptive Robust Control for Two-wheeled Inverted Pendulum System: Underactuation and Uncertainty

Author(s):  
Kang Huang ◽  
Mianhao Wang ◽  
Shengchao Zhen
Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 29-47 ◽  
Author(s):  
G. Rigatos ◽  
K. Busawon ◽  
J. Pomares ◽  
M. Abbaszadeh

SummaryThe article proposes a nonlinear optimal control method for the model of the wheeled inverted pendulum (WIP). This is a difficult control and robotics problem due to the system’s strong nonlinearities and due to its underactuation. First, the dynamic model of the WIP undergoes approximate linearization around a temporary operating point which is recomputed at each time step of the control method. The linearization procedure makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. For the linearized model of the wheeled pendulum, an optimal (H-infinity) feedback controller is developed. The controller’s gain is computed through the repetitive solution of an algebraic Riccati equation at each iteration of the control algorithm. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, by using the H-infinity Kalman Filter as a robust state estimator, the implementation of a state estimation-based control scheme becomes also possible.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
SongHyok Ri ◽  
Jian Huang ◽  
Yongji Wang ◽  
MyongHo Kim ◽  
Sonchol An

A terminal sliding mode controller with nonlinear disturbance observer is investigated to control mobile wheeled inverted pendulum system. In order to eliminate the main drawback of the sliding mode control, “chattering” phenomenon, and for compensation of the model uncertainties and external disturbance, we designed a nonlinear disturbance observer of the mobile wheeled inverted pendulum system. Based on the nonlinear disturbance observer, a terminal sliding mode controller is also proposed. The stability of the closed-loop mobile wheeled inverted pendulum system is proved by Lyapunov theorem. Simulation results show that the terminal sliding mode controller with nonlinear disturbance observer can eliminate the “chattering” phenomenon, improve the control precision, and suppress the effects of external disturbance and model uncertainties effectively.


Sign in / Sign up

Export Citation Format

Share Document