Robust control design for inverted pendulum system with uncertain disturbances

Author(s):  
Manish Yadav ◽  
Abhinav Kumar Gupta ◽  
Bhanu Pratap ◽  
Saurabh Saini
2008 ◽  
Vol 2008 ◽  
pp. 1-10
Author(s):  
S.S. Yang ◽  
J. Chen

This paper presents an enhanced robust control design structure to realise fault tolerance towards sensor faults suitable for multi-input-multi-output (MIMO) systems implementation. The proposed design permits fault detection and controller elements to be designed with considerations to stability and robustness towards uncertainties besides multiple faults environment on a common mathematical platform. This framework can also cater to systems requiring fast responses. A design example is illustrated with a fast, multivariable and unstable system, that is, the double inverted pendulum system. Results indicate the potential of this design framework to handle fast systems with multiple sensor faults.


2020 ◽  
Author(s):  
Luís Felipe Vieira Silva ◽  
Thiago Damasceno Cordeiro ◽  
Ícaro Bezerra Queiroz de Araújo ◽  
Heitor Judiss Savino

This works presents a H2/H∞ robust control scheme for a rotary inverted pendulum using Linear Matrix Inequality (LMI) approach based on Lyapunov theory and taking into account the uncertainty of the position of the pendulum to the servo-basis of the system. The dynamic model of the system is obtained by Euler-Lagrange formulation and the controller is obtained by solving a convex optimization problem. Experiments using this control scheme with changes in the position of the pendulum were made to compare the performance with another controller using pole placement control design. Results show that only H2/H∞ controller is able to maintain the stability of the system for all experiments performed in this work.


Author(s):  
Erwin Susanto

Currently, most of basic control engineering lectures teach both mathematic model and control of an inverted pendulum to explain stability problems in dynamic systems. The inverted pendulum system is a pendulum controlled with a certain force in order to stand in balance around vertical equilibrium line. Hence this system is a highly unstable system and needs stabilization methods using a  kind of controller. This paper describes how to design a Proportional Derivative Integral (PID) controller via root locus technique to stabilize it and realization of its interface system for monitoring angle trajectory. This visualization is needed to observe the stability and  effectiveness of its mathematic model and control design. Experimental results and analysis show that control design and interface system can be implemented well.


Sign in / Sign up

Export Citation Format

Share Document