scholarly journals P colonies and kernel P systems

Author(s):  
Erzsébet Csuhaj-Varjú ◽  
Marian Gheorghe ◽  
Raluca Lefticaru
Keyword(s):  

The theoretical computing models that are used throughout this book are described in this chapter. These models are based on the initial P system model and include: Numerical P systems, Enzymatic Numerical P systems, P colonies and P swarms. Detailed examples and execution diagrams help the reader allow the reader to understand the functioning principle of each model and also its potential in various applications. The similarity between P systems (and their variants) and robot control models is also addressed. This analysis is presented to the reader in a side-by-side manner using a table where each row represents an analysis topic. Among others we mention: (1) Architectural structure, (2) Modularity and hierarchy, (3) Input-output relationships, (4) Parallelism.


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>


2021 ◽  
pp. 104685
Author(s):  
Bosheng Song ◽  
Linqiang Pan
Keyword(s):  

2021 ◽  
pp. 104766
Author(s):  
Francis George C. Cabarle ◽  
Xiangxiang Zeng ◽  
Niall Murphy ◽  
Tao Song ◽  
Alfonso Rodríguez-Patón ◽  
...  
Keyword(s):  

2021 ◽  
pp. 104751
Author(s):  
Bosheng Song ◽  
Shengye Huang ◽  
Xiangxiang Zeng

Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


2021 ◽  
Vol 138 ◽  
pp. 126-139
Author(s):  
Luis Garcia ◽  
Giovanny Sanchez ◽  
Eduardo Vazquez ◽  
Gerardo Avalos ◽  
Esteban Anides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document