A layer-stripping method for 3D near-surface velocity model building using seismic first-arrival times

2015 ◽  
Vol 26 (4) ◽  
pp. 502-507 ◽  
Author(s):  
Taikun Shi ◽  
Jianzhong Zhang ◽  
Zhonglai Huang ◽  
Changkun Jin
Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. U63-U77
Author(s):  
Bernard K. Law ◽  
Daniel Trad

An accurate near-surface velocity model is critical for weathering statics correction and initial model building for depth migration and full-waveform inversion. However, near-surface models from refraction inversion often suffer from errors in refraction data, insufficient sampling, and over-simplified assumptions used in refraction algorithms. Errors in refraction data can be caused by picking errors resulting from surface noise, attenuation, and dispersion of the first-arrival energy with offset. These errors are partially compensated later in the data flow by reflection residual statics. Therefore, surface-consistent residual statics contain information that can be used to improve the near-surface velocity model. We have developed a new dataflow to automatically include median and long-wavelength components of surface-consistent reflection residual statics. This technique can work with any model-based refraction solution, including grid-based tomography methods and layer-based methods. We modify the cost function of the refraction inversion by adding model and data weights computed from the smoothed surface-consistent residual statics. By using an iterative inversion, these weights allow us to update the near-surface velocity model and to reject first-arrival picks that do not fit the updated model. In this nonlinear optimization workflow, the refraction model is derived from maximizing the coherence of the reflection energy and minimizing the misfit between model arrival times and the recorded first-arrival times. This approach can alleviate inherent limitations in shallow refraction data by using coherent reflection data.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. U39-U47 ◽  
Author(s):  
Hui Liu ◽  
Hua-wei Zhou ◽  
Wenge Liu ◽  
Peiming Li ◽  
Zhihui Zou

First-arrival traveltime tomography is a popular approach to building the near-surface velocity models for oil and gas exploration, mining, geoengineering, and environmental studies. However, the presence of velocity-inversion interfaces (VIIs), across which the overlying velocity is higher than the underlying velocity, might corrupt the tomographic solutions. This is because most first-arrival raypaths will not traverse along any VII, such as the top of a low-velocity zone. We have examined the impact of VIIs on first-arrival tomographic velocity model building of the near surface using a synthetic near-surface velocity model. This examination confirms the severe impact of VIIs on first-arrival tomography. When the source-to-receiver offset is greater than the lateral extent of the VIIs, good near-surface velocity models can still be established using a multiscale deformable-layer tomography (DLT), which uses a layer-based model parameterization and a multiscale scheme as regularization. Compared with the results from a commercial grid-based tomography, the DLT delivers much better near-surface statics solutions and less error in the images of deep reflectors.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. U109-U119
Author(s):  
Pengyu Yuan ◽  
Shirui Wang ◽  
Wenyi Hu ◽  
Xuqing Wu ◽  
Jiefu Chen ◽  
...  

A deep-learning-based workflow is proposed in this paper to solve the first-arrival picking problem for near-surface velocity model building. Traditional methods, such as the short-term average/long-term average method, perform poorly when the signal-to-noise ratio is low or near-surface geologic structures are complex. This challenging task is formulated as a segmentation problem accompanied by a novel postprocessing approach to identify pickings along the segmentation boundary. The workflow includes three parts: a deep U-net for segmentation, a recurrent neural network (RNN) for picking, and a weight adaptation approach to be generalized for new data sets. In particular, we have evaluated the importance of selecting a proper loss function for training the network. Instead of taking an end-to-end approach to solve the picking problem, we emphasize the performance gain obtained by using an RNN to optimize the picking. Finally, we adopt a simple transfer learning scheme and test its robustness via a weight adaptation approach to maintain the picking performance on new data sets. Our tests on synthetic data sets reveal the advantage of our workflow compared with existing deep-learning methods that focus only on segmentation performance. Our tests on field data sets illustrate that a good postprocessing picking step is essential for correcting the segmentation errors and that the overall workflow is efficient in minimizing human interventions for the first-arrival picking task.


2020 ◽  
Author(s):  
O. Bouhdiche ◽  
L. Vivin ◽  
P. Plasterie ◽  
T. Rebert ◽  
M. Retailleau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document