Geophysical electromagnetic (EM) methods are used in geological mapping, mineral exploration, groundwater studies and geotechnical investigations. Airborne EM methods have the benefit of avoiding terrain obstacles such as lakes, rivers, swamps, and ravines. Compared to manned aircrafts, drones or unmanned aerial vehicles (UAVs) have benefits of their own. Drone-based surveys are versatile, fast to deploy, economical and ecologically more friendly. Presently, magnetic surveying is the only geophysical method that is routinely conducted with drones. The modest maximum payload limit of drones imposes severe restrictions on the applicability of other methods including EM and radiometric methods, for example. Finnish company, Radai Ltd has been developing Louhi, a novel drone-based frequency-domain EM survey system, in an EU funded Horizon 2020 project NEXT – New Exploration Technologies. The EM system has two operation options – the first uses a large loop on the ground as an EM source and the other uses a small portable EM transmitter loop. Both systems utilize a stand-alone and light-weight three-component EM receiver that can be towed by a drone. This article presents the theoretical background of the EM methods, the solution developed by Radai Ltd, the current version of the EM device, and results from field and flight tests that demonstrate the applicability of the drone-based EM system under development.