Polynomial Decay of Mild Solutions to Semilinear Fractional Differential Equations with Nonlocal Initial Conditions

Author(s):  
Vu Trong Luong ◽  
Do Van Loi ◽  
Hoang Nam
Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 614 ◽  
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

In this paper a nonlinear system of Riemann–Liouville (RL) fractional differential equations with non-instantaneous impulses is studied. The presence of non-instantaneous impulses require appropriate definitions of impulsive conditions and initial conditions. In the paper several types of initial value problems are considered and their mild solutions are given via integral representations. In the linear case the equivalence of the solution and mild solutions is established. Conditions for existence and uniqueness of initial value problems are presented. Several examples are provided to illustrate the influence of impulsive functions and the interpretation of impulses in the RL fractional case.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


2010 ◽  
Vol 08 (02) ◽  
pp. 211-225 ◽  
Author(s):  
XINGMEI XUE

In this paper, we study the semilinear differential equations with nonlocal initial conditions in the separable Banach spaces. We derive conditions expressed in terms of the Hausdorff measure of noncompactness under which the mild solutions exit. For illustration, a partial integral differential system is worked out.


2018 ◽  
Vol 16 (1) ◽  
pp. 113-126
Author(s):  
Xuping Zhang ◽  
Qiyu Chen ◽  
Yongxiang Li

AbstractThis paper is devoted to study the existence and regularity of mild solutions in some interpolation spaces for a class of functional partial differential equations with nonlocal initial conditions. The linear part is assumed to be a sectorial operator in Banach space X. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can be applied to equations with terms involving spatial derivatives. Moreover, we present an example to illustrate the application of main results.


Sign in / Sign up

Export Citation Format

Share Document