scholarly journals Existence and regularity of mild solutions in some interpolation spaces for functional partial differential equations with nonlocal initial conditions

2018 ◽  
Vol 16 (1) ◽  
pp. 113-126
Author(s):  
Xuping Zhang ◽  
Qiyu Chen ◽  
Yongxiang Li

AbstractThis paper is devoted to study the existence and regularity of mild solutions in some interpolation spaces for a class of functional partial differential equations with nonlocal initial conditions. The linear part is assumed to be a sectorial operator in Banach space X. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can be applied to equations with terms involving spatial derivatives. Moreover, we present an example to illustrate the application of main results.

2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weishi Yin ◽  
Fei Xu ◽  
Weipeng Zhang ◽  
Yixian Gao

This paper is devoted to finding the asymptotic expansion of solutions to fractional partial differential equations with initial conditions. A new method, the residual power series method, is proposed for time-space fractional partial differential equations, where the fractional integral and derivative are described in the sense of Riemann-Liouville integral and Caputo derivative. We apply the method to the linear and nonlinear time-space fractional Kuramoto-Sivashinsky equation with initial value and obtain asymptotic expansion of the solutions, which demonstrates the accuracy and efficiency of the method.


2010 ◽  
Vol 08 (02) ◽  
pp. 211-225 ◽  
Author(s):  
XINGMEI XUE

In this paper, we study the semilinear differential equations with nonlocal initial conditions in the separable Banach spaces. We derive conditions expressed in terms of the Hausdorff measure of noncompactness under which the mild solutions exit. For illustration, a partial integral differential system is worked out.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Bo Zhu ◽  
Baoyan Han ◽  
Xiangyun Lin

In this paper, we consider a class of nonlinear time fractional partial differential equations with delay. We obtain the existence and uniqueness of the mild solutions for the problem by the theory of solution operator and the general Banach contraction mapping principle. We need not extra conditions to ensure the contraction constant 0<k<1. Therefore, under some general conditions, we obtain our main results.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zhongkai Guo ◽  
Jicheng Liu ◽  
Wenya Wang

We investigate the effect of domain perturbation on the behavior of mild solutions for a class of semilinear stochastic partial differential equations subject to the Dirichlet boundary condition. Under some assumptions, we obtain an estimate for the mild solutions under changes of the domain.


Author(s):  
B. P. W. Fernando ◽  
S. S. Sritharan

In this paper we consider a stochastic counterpart of Tosio Kato's quasi-linear partial differential equations and prove the existence and uniqueness of mild solutions.


Sign in / Sign up

Export Citation Format

Share Document