Geothermal gradients and heat flow variations in parts of the eastern Niger delta, Nigeria

2016 ◽  
Vol 88 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Chukwuemeka Frank R. Odumodu ◽  
Ayonma Wilfred Mode
Geophysics ◽  
1986 ◽  
Vol 51 (3) ◽  
pp. 767-779 ◽  
Author(s):  
J. A. Majorowicz ◽  
F. W. Jones ◽  
A.M. Jessop

Over 8 400 bottom‐hole temperature (BHT) values from the Canadian part of the Williston Basin were analyzed and a temperature high was discovered in the Weyburn area of southeastern Saskatchewan. Geothermal gradients, thermal conductivities, and heat flow have been investigated for most of the Mesozoic‐Cenozoic clastic unit as well as the Upper Paleozoic carbonate‐evaporite unit. Regional heat flow variations with depth occur which are closely related to the hydrodynamics governed by the topography and geology. The blanketing effect of low‐conductivity shaly formations may cause a temperature anomaly in the south where the thickest Phanerozoic cover exists. However, the Weyburn high can be explained only partially in this way. Hydrodynamics has also contributed to formation of the temperature anomaly there. The process of forming the anomaly by the blanketing effect and hydrodynamics also contributed to oil deposition. There is a correlation between Mississippian oil occurrences in the southeastern part of the basin and the location of the Weyburn temperature high.


2020 ◽  
Vol 8 (2) ◽  
pp. 263
Author(s):  
Uche Iduma ◽  
Stephen Stephen Onyejiuwaka ◽  
Nwokeabia Charity Nkiru

Aeromagnetic dataset over Ikot Ekpene and environs, Eastern Niger Delta Basin, was processed to compute the basement depth, Curie isotherm depth, geothermal gradient and heat flow within the area in order to investigate the depth to magnetic sources, geothermal prospect and the hydrocarbon potential of the place. The adopted computational method transformed the spatial data into frequency domain and provided a relationship between radially average power spectrum of the magnetic anomalies and the depths to respective sources.  The results of the analysis showed that the depths to centroids and top boundaries range from 7.84 to 13.38 km and 0.233 to 0.459 km respectively. Curie depths within the basin undulate and vary between 15.42 and 26.49 km. The geothermal gradients range between 20.758 and 35.649 ⁰C/km while the corresponding heat flow is about 51.896 mWm⁻² within east of Ikono, north of Mbak and west of Abak Areas and 89.124 mWm⁻² within Amawum, Ndoro, Isiala, Ogbuebule and east of Uyo Areas. Based on the computed sedimentary thicknesses, high geothermal gradients and delineated major faults and fractures which could serve as migratory pathway for hydrocarbon or hydrothermal fluid, some parts of the study area have been demarcated for geothermal prospect and detail hydrocarbon exploration.  


2013 ◽  
Author(s):  
Aimen Amer ◽  
Rolando di Primio ◽  
Robert Ondrak ◽  
Vikram Unnithan

1989 ◽  
Vol 11 (1) ◽  
pp. 69-76 ◽  
Author(s):  
R. M. Prol-Ledesma ◽  
V. M. Sugrobov ◽  
E. L. Flores ◽  
G. Ju�rez M. ◽  
Ya. B. Smirnov ◽  
...  

2018 ◽  
Vol 27 (4) ◽  
pp. 1291-1299
Author(s):  
Jean Aimé Mono ◽  
Théophile Ndougsa-Mbarga ◽  
Yara Tarek ◽  
Jean Daniel Ngoh ◽  
Olivier Ulrich Igor Owono Amougou

2021 ◽  
Vol 23 (1) ◽  
pp. 195-211
Author(s):  
I.M. Okiyi ◽  
S.I. Ibeneme ◽  
E.Y. Obiora ◽  
S.O. Onyekuru ◽  
A.I. Selemo ◽  
...  

Residual aeromagnetic data of parts of Southeastern Nigerian sedimentary basin were reduced to the equator and subjected to magnetic vector inversion and spectral analysis. Average depths of source ensembles from spectral analysis were used to compute depth to magnetic tops (Z), base of the magnetic layer (Curie Point t Depth (CPD)), and estimate geothermal gradient and heat flow required for the evaluation of the geothermal resources of the study area. Results from spectral analysis showed depths to the top of the magnetic source ranging between 0.45 km and 1.90 km; centroid depths of 4 km - 7.87 km and CPD of between 6.15 km and 14.19 km. The CPD were used to estimate geothermal gradients which ranged from 20.3°C/km to 50.0°C/km 2 2 and corresponding heat flow values of 34.9 mW/m to 105 mW/m , utilizing an average thermal conductivity -1 -1 of 2.15 Wm k . Ezzagu (Ogboji), Amanator-Isu, Azuinyaba, Nkalagu, Amagunze, Nta-Nselle, Nnam, Akorfornor environs are situated within regions of high geothermal gradients (>38°C/Km) with models delineated beneath these regions using 3D Magnetic Vector Inversion, having dominant NW-SE and NE-SW trends at shallow and greater depths of <1km to >7 km bsl. Based on VES and 2D imaging models the geothermal system in Alok can be classified as Hot Dry Rock (HDR) type, which may likely have emanated from fracture systems. There is prospect for the development of geothermal energy in the study area. Keywords: Airborne Magnetics, Magnetic Vector Inversion, Geothermal Gradient, Heat Flow, Curie Point Depth, Geothermal Energy.


Author(s):  
Suze Nei Pereira Guimarães ◽  
Fábio Pinto Vieira ◽  
Valiya Mannathal Hamza

The present work provides a reappraisal of terrestrial heat flow variations in the Antarctic continent, based on recent advances in data analysis and regional assessments. The data considered include those reported at the website of IHFC and 78 additional sites where measurements have been made using a variety of techniques. These include values based on the Method of Magmatic Heat Budget (MHB) for 41 localities in areas of recent volcanic activity and estimates that rely on basal temperatures of glaciers in 372 localities that are known to host subglacial lakes. The total number of data assembled is 491, which has been useful in deriving a 10°x10° grid system of homogenized heat flow values and in deriving a new heat flow map of the Antarctic continent. The results reveal that the Antarctic Peninsula and western segment of the Antarctic continent has distinctly high heat flow relative to the eastern regions. The general pattern of differences in heat flow between eastern and western of Antarctic continent is in striking agreement with results based on seismic velocities.


2014 ◽  
Author(s):  
Yury Anatolievich Popov ◽  
Evgeny Popov ◽  
Dmitriy Miklashevskiy ◽  
Dmitriy Aleksandrovich Korobkov

Sign in / Sign up

Export Citation Format

Share Document