Assessment of groundwater potential zone using remote sensing, GIS and multi criteria decision analysis techniques

2016 ◽  
Vol 88 (4) ◽  
pp. 481-492 ◽  
Author(s):  
D. C. Jhariya ◽  
Tarun Kumar ◽  
M. Gobinath ◽  
Prabhat Diwan ◽  
Nawal Kishore
2020 ◽  
Vol 3 (3b) ◽  
pp. 99-111
Author(s):  
JS Ejepu

The growing demand for freshwater for domestic and industrial purposes is a current challenge in the Upper Niger River Basin Development Authority area. Consequently, there is heavy demand for groundwater resources to meet this need. This challenge has worsened due to the non-incorporation of integrated methods in groundwater exploration campaigns. Innovative scientific principles and quantitative assessment of groundwater resources are required for sustainable and proper management of the resources. Therefore, the objective of this paper is to exploit the potential application of remote sensing, Geographic Information System (GIS), and Multi-Criteria Decision Analysis (MCDA) techniques in mapping groundwater potential zones. To achieve this, seven factors deemed to have significant control over the occurrence and movement of groundwater viz. geology, lineament density, slope, drainage density, rainfall, land-use/land cover, and soil class were produced. These factors were assigned weights and normalized with respect to their relative contributions to groundwater occurrence using the Analytic Hierarchy Process (AHP). This resulted in groundwater potential zones that have been classified into four: Very good, Good, Moderate and Poor representing 7%, 27%, 43%, and 23% respectively. This result represents groundwater potential in the area and should be used as a preliminary reference in selecting prospective sites for detailed groundwater resource exploitation


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


2018 ◽  
Vol 92 (4) ◽  
pp. 484-490 ◽  
Author(s):  
G. Gnanachandrasamy ◽  
Yongzhang Zhou ◽  
M. Bagyaraj ◽  
S. Venkatramanan ◽  
T. Ramkumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document