Interleukin-1β Regulates Lipid Homeostasis in Human Glomerular Mesangial Cells

2019 ◽  
Vol 24 (3) ◽  
pp. 246-250 ◽  
Author(s):  
Hua Liu ◽  
Y. Deng ◽  
L. Wu ◽  
Y. Li ◽  
N. Lin ◽  
...  
2020 ◽  
Vol 17 (8) ◽  
pp. 1056-1061
Author(s):  
Hua Liu ◽  
Yinping Li ◽  
Na Lin ◽  
Xingtong Dong ◽  
Wen Li ◽  
...  

Life Sciences ◽  
1990 ◽  
Vol 46 (20) ◽  
pp. 1465-1470 ◽  
Author(s):  
V. Kaever ◽  
J. Bruuns ◽  
J. Wunder ◽  
B. Damerau ◽  
G. Zimmer ◽  
...  

1994 ◽  
Vol 267 (4) ◽  
pp. F528-F536 ◽  
Author(s):  
G. Grandaliano ◽  
G. G. Choudhury ◽  
P. Biswas ◽  
H. E. Abboud

Thrombin elicits multiple biological effects on a variety of cells. We have previously shown that thrombin is a potent mitogen for human glomerular mesangial cells. This mitogenic effect of thrombin is associated with activation of phospholipase C (PLC) and induction of platelet-derived growth factor (PDGF) gene expression. The thrombin receptor, which belongs to the guanine nucleotide binding protein (G protein)-coupled receptor family, has recently been shown to induce rapid tyrosine phosphorylation of cellular proteins. In the present study, we investigated the role of protein-tyrosine phosphorylation in mediating the cellular responses elicited by thrombin in human glomerular mesangial cells. Amino acid labeling followed by immunoprecipitation with phosphotyrosine antibodies demonstrate that thrombin stimulates tyrosine phosphorylation of a set of cellular proteins. Treatment of mesangial cells with thrombin followed by immunoblotting with phosphotyrosine antibodies showed three major bands of tyrosine-phosphorylated proteins approximately 130, 70, and 44-42 kDa. Phosphorylation of these proteins was inhibited by two tyrosine kinase inhibitors, herbimycin A and genistein. Both compounds inhibited DNA synthesis and PDGF B-chain gene expression but had no effect on inositol phosphates production or increases in cytosolic calcium in response to thrombin. These data demonstrate that protein-tyrosine phosphorylation is not required for thrombin-induced PLC activation with inositol phosphate formation and subsequent intracellular calcium release, but it is an absolute requirement for thrombin-induced DNA synthesis and PDGF B-chain gene expression.


1988 ◽  
Vol 255 (4) ◽  
pp. F674-F684 ◽  
Author(s):  
P. J. Shultz ◽  
P. E. DiCorleto ◽  
B. J. Silver ◽  
H. E. Abboud

Platelet-derived growth factor (PDGF) is a potent mitogen for cells of mesenchymal origin and is released and/or synthesized by platelets, macrophages, endothelial cells, and rat mesangial cells. In the present investigation, we found that human glomerular mesangial cells in culture release a PDGF-like protein which competes for 125I-PDGF binding to human foreskin fibroblasts and is mitogenic for these fibroblasts. The competing and to a lesser extent the mitogenic activities present in the conditioned medium are partially recognized by an anti-PDGF antibody. Northern blot analysis of poly(A)+ RNA from human mesangial cells demonstrates the expression of both PDGF A- and B-chain mRNAs. PDGF also binds to mesangial cells in a specific manner and stimulates DNA synthesis and cell proliferation. These data suggest that a PDGF-like protein secreted by mesangial cells or released from platelets, monocytes, or endothelial cells during glomerular inflammation may function as an autocrine or a paracrine growth factor for these cells. The biological role of PDGF in mediating proliferative and other inflammatory events in the glomerulus remains to be identified.


2007 ◽  
Vol 107 (2) ◽  
pp. e73-e86 ◽  
Author(s):  
Larine Nee ◽  
Niamh Tuite ◽  
Michael P. Ryan ◽  
Tara McMorrow

Hypertension ◽  
2003 ◽  
Vol 42 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Raghvendra K. Dubey ◽  
Lefteris C. Zacharia ◽  
Delbert G. Gillespie ◽  
Bruno Imthurn ◽  
Edwin K. Jackson

Sign in / Sign up

Export Citation Format

Share Document