Antinociceptive effect of intrathecal administration of taurine in rat models of neuropathic pain

2011 ◽  
Vol 58 (7) ◽  
pp. 630-637 ◽  
Author(s):  
Tadanori Terada ◽  
Koji Hara ◽  
Yasunori Haranishi ◽  
Takeyoshi Sata
Amino Acids ◽  
2011 ◽  
Vol 43 (1) ◽  
pp. 397-404 ◽  
Author(s):  
Koji Hara ◽  
Motohiro Nakamura ◽  
Yasunori Haranishi ◽  
Tadanori Terada ◽  
Kazunori Kataoka ◽  
...  

2000 ◽  
Vol 93 (2) ◽  
pp. 473-481 ◽  
Author(s):  
Mei Xu ◽  
Vesa K. Kontinen ◽  
Eija Kalso

Background Intrathecally administered alpha2-adrenoceptor agonists produce effective antinociception, but sedation is an important adverse effect. Radolmidine is a novel alpha2-adrenoceptor agonist with a different pharmacokinetic profile compared with the well-researched dexmedetomidine. This study determined the antinociceptive and sedative effects of radolmidine in different models of acute and chronic pain. Dexmedetomidine and saline served as controls. Methods Male Sprague-Dawley rats were studied in acute pain (tail flick), carrageenan inflammation, and the spinal nerve ligation model of neuropathic pain. Mechanical allodynia was assessed with von Frey filaments, cold allodynia with the acetone test, and thermal hyperalgesia with the paw flick test. Locomotor activity-vigilance was assessed in a dark field. Dexmedetomidine and radolmidine were administered intrathecally in doses of 0.25 microg, 2.5 microg, 5 microg, and 10 microg. Results In the tail flick test, radolmidine showed a dose-dependent antinociceptive effect, being equipotent compared with dexmedetomidine. In carrageenan inflammation, intrathecal doses of 2.5 microg or 5 microg of dexmedetomidine/radolmidine produced significant antinociception compared with saline (P < 0.01). The two drugs were equianalgesic. In the neuropathic pain model, an intrathecal dose of 5 microg dexmedetomidine-radolmidine had a significant antiallodynic effect compared with saline (P < 0.01). The two drugs were equipotent. Intrathecal administration of both dexmedetomidine and radolmidine dose dependently decreased spontaneous locomotor acitivity-vigilance, but this effect was significantly smaller after intrathecal administration of radolmidine than after intrathecal dexmedetomidine. Conclusions Radolmidine and dexmedetomidine had equipotent antinociceptive effects in all tests studied. However, radolmidine caused significantly less sedation than dexmedetomidine, probably because of a different pharmacokinetic profile.


2012 ◽  
Vol 29 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Aldric T. Hama ◽  
Alex Broadhead ◽  
Daniel S. Lorrain ◽  
Jacqueline Sagen

2015 ◽  
Vol 396 (6-7) ◽  
pp. 783-794 ◽  
Author(s):  
Dong Dong Zhang ◽  
Bona Linke ◽  
Jing Suo ◽  
Aleksandra Zivkovic ◽  
Yannick Schreiber ◽  
...  

Abstract FTY720 (fingolimod) is, after its phosphorylation by sphingosine kinase (SPHK) 2, a potent, non-selective sphingosine-1-phosphate (S1P) receptor agonist. FTY720 has been shown to reduce the nociceptive behavior in the paclitaxel model for chemotherapy-induced neuropathic pain through downregulation of S1P receptor 1 (S1P1) in microglia of the spinal cord. Here, we investigated the mechanisms underlying the antinociceptive effects of FTY720 in a model for trauma-induced neuropathic pain. We found that intrathecal administration of phosphorylated FTY720 (FTY720-P) decreased trauma-induced pain behavior in mice, while intraplantar administered FTY720-P had no effect. FTY720-P, but not FTY720, reduced the nociceptive behavior in SPHK2-deficient mice, suggesting the involvement of S1P receptors. Fittingly, intrathecal administration of antagonists for S1P1 or S1P3, W146 and Cay10444 respectively, abolished the antinociceptive effects of systemically administered FTY720, demonstrating that activation of both receptors in the spinal cord is necessary to induce antinociceptive effects by FTY720. Accordingly, intrathecal administration of S1P1 receptor agonists was not sufficient to evoke an antinociceptive effect. Taken together, the data show that, in contrast to its effects on chemotherapy-induced neuropathy, FTY720 reduces trauma-induced neuropathic pain by simultaneous activation of spinal S1P1 and S1P3 receptor subtypes.


2009 ◽  
Vol 63 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Tetsuya Ikeda ◽  
Yasushi Ishida ◽  
Rumi Naono ◽  
Ryuichiro Takeda ◽  
Hiroshi Abe ◽  
...  

2006 ◽  
Vol 10 (S1) ◽  
pp. S207b-S207
Author(s):  
E. Guneli ◽  
N.U. Karabay-Yavasoglu ◽  
S. Apaydin ◽  
M. Uyar ◽  
M. Uyar

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Yan Dong ◽  
Chong-Yang Li ◽  
Xiao-Min Zhang ◽  
Ya-Nan Liu ◽  
Shuang Yang ◽  
...  

AbstractOur previous research has shown that galanin plays an antinociceptive effect via binding to galanin receptors (GalRs) in nucleus accumbens (NAc). This study focused on the involvement of GalR2 in galanin-induced antinociceptive effect in NAc of neuropathic pain rats. The chronic constriction injury of sciatic nerve (CCI) was used to mimic neuropathic pain model. The hind paw withdrawal latency (HWL) to thermal stimulation and hind paw withdrawal threshold (HWT) to mechanical stimulation were measured as the indicators of pain threshold. The results showed that 14 and 28 days after CCI, the expression of GalR2 was up-regulated in bilateral NAc of rats, and intra-NAc injection of GalR2 antagonist M871 reversed galanin-induced increases in HWL and HWT of CCI rats. Furthermore, intra-NAc injection of GalR2 agonist M1145 induced increases in HWL and HWT at day 14 and day 28 after CCI, which could also be reversed by M871. Finally, we found that M1145-induced antinociceptive effect in NAc of CCI rats was stronger than that in intact rats. These results imply that the GalR2 is activated in the NAc from day 14 to day 28 after CCI and GalR2 is involved in the galanin-induced antinociceptive effect in NAc of CCI rats.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 434
Author(s):  
Tomohiro Yamashita ◽  
Sawako Kamikaseda ◽  
Aya Tanaka ◽  
Hidetoshi Tozaki-Saitoh ◽  
Jose M. M. Caaveiro ◽  
...  

P2X7 receptors (P2X7Rs) belong to a family of ATP-gated non-selective cation channels. Microglia represent a major cell type expressing P2X7Rs. The activation of microglial P2X7Rs causes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β). This response has been implicated in neuroinflammatory states in the central nervous system and in various diseases, including neuropathic pain. Thus, P2X7R may represent a potential therapeutic target. In the present study, we screened a chemical library of clinically approved drugs (1979 compounds) by high-throughput screening and showed that the Ca2+ channel blocker cilnidipine has an inhibitory effect on rodent and human P2X7R. In primary cultured rat microglial cells, cilnidipine inhibited P2X7R-mediated Ca2+ responses and IL-1β release. Moreover, in a rat model of neuropathic pain, the intrathecal administration of cilnidipine produced a reversal of nerve injury-induced mechanical hypersensitivity, a cardinal symptom of neuropathic pain. These results point to a new inhibitory effect of cilnidipine on microglial P2X7R-mediated inflammatory responses and neuropathic pain, proposing its therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document