Long-term ozone trend and its effect on night airglow intensity of Li 6708 Å at Ahmedabad (23°N, 72.5°E), India and Halley Bay (76°S, 27°W), British Antarctic Service Station

2010 ◽  
Vol 84 (1) ◽  
pp. 41-53 ◽  
Author(s):  
P. K. Jana ◽  
I. Saha ◽  
P. Das ◽  
D. Sarkar ◽  
S. K. Midya
2008 ◽  
Vol 26 (5) ◽  
pp. 1189-1197 ◽  
Author(s):  
J. Bremer

Abstract. Ground based ionosonde measurements are the most essential source of information about long-term variations in the ionospheric E and F1 regions. Data of such observations have been derived at many different ionospheric stations all over the world some for more than 50 years. The standard parameters foE, h'E, and foF1 are used for trend analyses in this paper. Two main problems have to be considered in these analyses. Firstly, the data series have to be homogeneous, i.e. the observations should not be disturbed by artificial steps due to technical reasons or changes in the evaluation algorithm. Secondly, the strong solar and geomagnetic influences upon the ionospheric data have carefully to be removed by an appropriate regression analysis. Otherwise the small trends in the different ionospheric parameters cannot be detected. The trends derived at individual stations differ markedly, however their dependence on geographic or geomagnetic latitude is only small. Nevertheless, the mean global trends estimated from the trends at the different stations show some general behaviour (positive trends in foE and foF1, negative trend in h'E) which can at least qualitatively be explained by an increasing atmospheric greenhouse effect (increase of CO2 content and other greenhouse gases) and decreasing ozone values. The positive foE trend is also in qualitative agreement with rocket mass spectrometer observations of ion densities in the E region. First indications could be found that the changing ozone trend at mid-latitudes (before about 1979, between 1979 until 1995, and after about 1995) modifies the estimated mean foE trend.


2002 ◽  
Vol 2 (5) ◽  
pp. 363-374 ◽  
Author(s):  
D. T. Shindell ◽  
G. Faluvegi

Abstract. Using historical observations and model simulations, we investigate ozone trends prior to the mid-1970s onset of halogen-induced ozone depletion. Though measurements are quite limited, an analysis based on multiple, independent data sets (direct and indirect) provides better constraints than any individual set of observations. We find that three data sets support an apparent long-term stratospheric ozone trend of -7.2 ± 2.3 DU during 1957-1975, which modeling attributes primarily to water vapor increases. The results suggest that 20th century stratospheric ozone depletion may have been roughly 50% more than is generally supposed. Similarly, three data sets support tropospheric ozone increases over polluted Northern Hemisphere continental regions of 8.2 ± 2.1 DU during this period, which are mutually consistent with the stratospheric trends. As with paleoclimate data, which is also based on indirect proxies and/or limited spatial coverage, these results must be interpreted with caution. However, they provide the most thorough estimates presently available of ozone changes prior to the coincident onset of satellite data and halogen dominated ozone changes. If these apparent trends were real, the radiative forcing by stratospheric ozone since the 1950s would then have been -0.15 ± 0.05 W/m2, and -0.2 W/m2 since the preindustrial. For tropospheric ozone, it would have been 0.38 ± 0.10 W/m2 since the late 1950s. Combined with even a very conservative estimate of tropospheric ozone forcing prior to that time, this would be larger than current estimates since 1850 which are derived from models that are even less well constrained. These calculations demonstrate the importance of gaining a better understanding of historical ozone changes.


2003 ◽  
Vol 24 (2) ◽  
pp. 329-338 ◽  
Author(s):  
G. Jaross ◽  
S. L Taylor ◽  
C. G. Wellemeyer ◽  
R. P. Cebula ◽  
L.-K. Huang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document