british antarctic survey
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

ZooKeys ◽  
2021 ◽  
Vol 1054 ◽  
pp. 155-172
Author(s):  
Melanie Mackenzie ◽  
P. Mark O'Loughlin ◽  
Huw Griffiths ◽  
Anton Van de Putte

Thirty-seven holothuroid species, including six potentially new, are reported from the eastern Weddell Sea in Antarctica. Information regarding sea cucumbers in this dataset is based on Agassiz Trawl (AGT) samples collected during the British Antarctic Survey cruise JR275 on the RRS James Clark Ross in the austral summer of 2012. Species presence by site and an appendix of holothuroid identifications with registrations are included as supplementary material. Species occurrence in the Weddell Sea is updated to include new holothuroids from this expedition.


2021 ◽  
pp. 1-13
Author(s):  
Robert Mulvaney ◽  
Julius Rix ◽  
Scott Polfrey ◽  
Mackenzie Grieman ◽  
Carlos Martìn ◽  
...  

Abstract To understand the long-term climate and glaciological evolution of the ice sheet in the region bordering the Weddell Sea, the British Antarctic Survey has undertaken a series of successful ice core projects drilling to bedrock on Berkner Island, James Ross Island and the Fletcher Promontory. A new project, WACSWAIN, seeks to increase this knowledge by further drilling to bedrock on two further ice rises in this region. In a single-season project, an ice core was recovered to bedrock at 651 m on Skytrain Ice Rise using an ice core drill in a fluid-filled borehole. In a second season, a rapid access drill was used to recover ice chips to 323 m on Sherman Island in a dry borehole, though failing to reach the bedrock which was at an estimated depth of 428 m.


Author(s):  
Koen van Doremaele

<p>Rothera is the main mooring location in Antarctica for research vessels of the British Antarctic Survey (BAS). The existing wharf had reached the limit of its design life. To provide mooring of the new UK polar research ship, the RRS <i>Sir David Attenborough</i>, a larger wharf structure was designed that required removal of the existing structure. This paper describes the engineering and technical challenges on providing a safe and stable structure during dismantling as well as the effects of icebergs, low temperatures and wildlife around this Antarctic research station.</p>


Polar Record ◽  
2021 ◽  
Vol 57 ◽  
Author(s):  
Gareth Rees ◽  
Laura Gerrish ◽  
Adrian Fox ◽  
Richard Barnes

Abstract Antarctica’s Pole of Inaccessibility (Southern Pole of Inaccessibility (SPI)) is the point on the Antarctic continent farthest from its edge. Existing literature exhibits disagreement over its location. Using two revisions of the Scientific Committee on Antarctic Research’s Antarctic Digital Database, we calculate modern-day positions for the SPI around 10 years apart, based on the position of the “outer” Antarctic coastline, i.e. its boundary with the ocean. These show that the position of the SPI in the year 2010 was around 83° 54’ S, 64° 53’ E, shifting on the order of 1 km per year as a result of changes of a similar magnitude in the Amery, Ronne-Filchner and Ross Ice Shelves. Excepting a position of the SPI calculated by British Antarctic Survey in 2005, to which it is very close, our newly calculated position differs by 150–900 km from others reported in the literature. We also consider the “inner” SPI, defined by the coastline with floating ice removed. The position of this SPI in 2010 is estimated as 83°37’ S, 53° 43’ E, differing significantly from other reported positions. Earlier cartographic data are probably not sufficiently accurate to allow its rate of change to be calculated meaningfully.


2020 ◽  
pp. 1-5
Author(s):  
Keith Makinson ◽  
Daniel Ashurst ◽  
Paul G. D. Anker ◽  
James A. Smith ◽  
Dominic A. Hodgson ◽  
...  

Abstract Subglacial sediments have the potential to reveal information about the controls on glacier flow, changes in ice-sheet history and characterise life in those environments. Retrieving sediments from beneath the ice, through hot water drilled access holes at remote field locations, present many challenges. Motivated by the need to minimise weight, corer diameter and simplify assembly and operation, British Antarctic Survey, in collaboration with UWITEC, developed a simple mechanical percussion corer. At depths over 1000 m however, manual operation of the percussion hammer is compromised by the lack of clear operator feedback at the surface. To address this, we present a new auto-release-recovery percussion hammer mechanism that makes coring operations depth independent and improves hammer efficiency. Using a single rope tether for both the corer and hammer operation, this modified percussion corer is relatively simple to operate, easy to maintain, and has successfully operated at a depth of >2130 m.


2019 ◽  
Vol 12 (6) ◽  
pp. 2091
Author(s):  
Natália Silva ◽  
Ilana Elazari Klein Coaracy Wainer ◽  
Marcos Henrique Maruch Tonelli

A Antártica é uma região do planeta extremamente sensível às mudanças globais do clima. Para quantificar essas mudanças, é possível estudar a variação de algumas propriedades atmosféricas como temperatura (T), pressão no nível do mar (PNM) e velocidade de ventos (v). Dados de estações meteorológicas espalhadas pela Antártica distribuídos pelo British Antarctic Survey são analisados. Os resultados mostram que as tendências de temperatura apresentam uma distribuição peculiar, visto que na porção oeste do continente há um intenso aquecimento (e.g.,0.55°C/década em San Martin), enquanto que o lado leste observa um resfriamento (-0.06°C/década em Zhongshan). O índice Intervalo de Temperatura Diária (ITD) também é utilizado para caracterizar mudanças climáticas e é consistente com as variações obtidas para a temperatura, caracterizando, portanto, o chamado Padrão de Dipolo na temperatura. Com relação à PNM, 19 estações meteorológicas das 20 estudadas, apresentam tendências negativas e na grande maioria dessas observa-se também intensificação da velocidade dos ventos. Essas mudanças estão associadas principalmente aos modos de variabilidade natural do planeta, sendo que o maior determinante das características climáticas nas regiões extratropicais do Hemisfério Sul é o Modo Anular do Hemisfério Sul (SAM). Characterization of climate change in Antarctica from the second half of 20th CenturyA B S T R A C TAntarctica is a region of the planet extremely sensitive to global climate change. To quantify these changes, it is possible to study the variation of some atmospheric properties such as Temperature, Sea Level Pressure and Wind Speed. Data from meteorological stations in Antarctica provided by the British Antarctic Survey are analyzed. The results show that Temperature trends have a peculiar distribution, since on the western side of the continent there is intense heating (e.g., 0.55°C/decade in San Martin), while the east side observes cooling trends (-0.06°C/decade  in Zhongshan). The Daily Temperature Range index is also used to characterize climatic changes and agrees with the variations obtained for the Temperature, thus characterizing the so-called Dipole Pattern in temperature. About the Sea Level Pressure, 19 meteorological stations of the 20 studied, present negative trends and in the great majority of these it is also observed intensification on the wind speed. These changes are mainly associated with the natural modes of variability of the planet, and the Southern Hemisphere Annular Mode (SAM) is the major determinant of the climatic characteristics in the extratropical regions of the Southern Hemisphere.Keywords: Antarctica, Climate Change, Temperature Dipole, Southern Hemisphere Annular Mode.


Sign in / Sign up

Export Citation Format

Share Document