Seasonal variation of daily total column ozone (TCO) and role of its depletion and formation rate on surface temperature over Dumdum at Kolkata, India

2011 ◽  
Vol 85 (8) ◽  
pp. 1247-1256 ◽  
Author(s):  
S. K. Midya ◽  
D. Ghosh ◽  
S. C. Ganda ◽  
H. Sarkar
2007 ◽  
Vol 7 (21) ◽  
pp. 5625-5637 ◽  
Author(s):  
G. E. Bodeker ◽  
H. Garny ◽  
D. Smale ◽  
M. Dameris ◽  
R. Deckert

Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and a detailed investigation of the mechanisms responsible for the event has not previously been undertaken. In this study, the 1985 Southern Hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced reduction in ozone. Similar QBO and solar cycle influences prevailed in 1997 and 2006 when again total column ozone was found to be suppressed over southern mid-latitudes. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in effecting the anomaly.


2000 ◽  
Vol 27 (13) ◽  
pp. 1907-1910 ◽  
Author(s):  
Terrence R. Nathan ◽  
Eugene C. Cordero ◽  
Long Li ◽  
Donald J. Wuebbles

2007 ◽  
Vol 7 (3) ◽  
pp. 7137-7169
Author(s):  
G. E. Bodeker ◽  
H. Garny ◽  
D. Smale ◽  
M. Dameris ◽  
R. Deckert

Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and most state-of-the-art atmospheric chemistry-transport models are unable to reproduce it. In this study, the 1985 southern hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced local reduction in ozone. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in the anomaly.


2019 ◽  
Vol 24 (3) ◽  
pp. 425-439
Author(s):  
Julio César González-Navarrete ◽  
Julian Salamanca

The aim of this paper is to broaden the scope of a recent adaptive model in order to obtain predictions of total column ozone (TCO) trends over the Amazon Inter-Tropical Confluence Zone (ITCZ). The adaptive model makes daily TCO predictions over the tropical equator-Andes-Region, relying on seasonal patterns and the solar cycle. This study uses daily observations of the sunspot number cycle, given by the World Data Center for the production, preservation and dissemination of the international sunspot number (Royal Observatory of Belgium), and satellite total-column ozone data, collected by NASA (January 1979 to April 2018), for two Colombian locations: one in and one adjacent to the ITCZ. The agreement between daily total-column predictions by the adaptive model and satellite observations is excellent. Daily averaged relative errors around of 3.7 % and 2.8 % for both locations are reported herein.


2017 ◽  
Author(s):  
Andrew R. D. Smedley ◽  
John S. Rimmer ◽  
Ann R. Webb

Abstract. Long-term trends of total column ozone, assessments of stratospheric ozone recovery and satellite validation are underpinned by a reliance on daily “best representative values” from Brewer spectrophotometers and other ground-based ozone instruments. In turn reporting of these daily total column ozone values to the World Ozone and Ultraviolet Data Centre has traditionally been predicated upon a binomial choice between direct sun and zenith sky observations. For mid- and high-latitude monitoring sites impacted by cloud cover we discuss the potential deficiencies of this approach in terms of its rejection of otherwise valid observations and capability to evenly sample throughout the day. A new methodology is proposed that makes full use of all valid direct sun and zenith sky observations, accounting for unevenly spaced observations and their relative uncertainty, to calculate an improved estimate of the daily mean total column ozone. It is demonstrated that this method can increase the number of contributing observations by a factor of 2.5, increases the sampled time span, and reduces the spread of the representative time by half. No effect on longer-term trends is detected, though for the sample data analysed we observe a mean increase of 2.8 DU (0.82 %) w.r.t. the traditional direct sun vs zenith sky average choice. To complement the new calculation of a best representative value of total column ozone and separate its uncertainty from the spread of observations, we also propose reporting its standard error rather than the standard deviation, together with measures of the full range of values observed.


2016 ◽  
Author(s):  
Jiyoung Kim ◽  
Jhoon Kim ◽  
Hi-Ku Cho ◽  
Jay Herman ◽  
Sang Seo Park ◽  
...  

Abstract. Daily total column ozone (TCO) measured using the Pandora spectrophotometer (#19) was intercompared with data from the Dobson (#124) and Brewer (#148) spectrophotometers, as well as from the Ozone Monitoring Instrument (OMI), over the 2-year period between March 2012 and March 2014 at Yonsei University, Seoul, Korea. The Pandora TCO measurements are closely correlated with those from the Dobson, Brewer, and OMI instruments with regression coefficients (slopes) of 0.95, 1.00, 0.98 (OMI-TOMS), and 0.97 (OMI-DOAS), respectively, and determination coefficients (R2) of 0.95, 0.97, 0.96 (OMI-TOMS), and 0.95 (OMI-DOAS), respectively. In particular, they show a close agreement with the Brewer TCO measurements, with slope and R2 values of 1.00 and 0.97, respectively. The difference between the Pandora and Dobson data can be explained by smaller amount of Dobson data available to calculate the daily averages, observation times, solar zenith angles, SO2 effect, temperature, and humidity between the two datasets. The difference in the results obtained from the Pandora instrument and Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS algorithm) can be explained by the dependence on seasonal variations of about ± 2 % and solar zenith angle leading to overestimation by 5 % of OMI-DOAS measurements. For the Dobson measurements in particular, the difference caused by the inconsistency in observation times when compared with the Pandora measurements was up to 12.5 % on 22 June 2013 because of diurnal variations in the TCO values. However, despite these various differences and discrepancies, the daily TCO values measured by the four instruments during the 2-year study period are accurate and closely correlated.


2017 ◽  
Vol 10 (12) ◽  
pp. 4697-4704
Author(s):  
Andrew R. D. Smedley ◽  
John S. Rimmer ◽  
Ann R. Webb

Abstract. Long-term trends of total column ozone (TCO), assessments of stratospheric ozone recovery, and satellite validation are underpinned by a reliance on daily best representative values from Brewer spectrophotometers and other ground-based ozone instruments. In turn reporting of these daily total column ozone values to the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) has traditionally been predicated upon a simple choice between direct sun (DS) and zenith sky (ZS) observations. For mid- and high-latitude monitoring sites impacted by cloud cover we discuss the potential deficiencies of this approach in terms of its rejection of otherwise valid observations and capability to evenly sample throughout the day. A new methodology is proposed that makes full use of all valid direct sun and zenith sky observations, accounting for unevenly spaced observations and their relative uncertainty, to calculate an improved estimate of the daily mean total column ozone. It is demonstrated that this method can increase the number of contributing observations by a factor of 2.5, increases the sampled time span, and reduces the spread of the representative time by half. The largest improvements in the daily mean estimate are seen on days with the smallest number of contributing direct sun observations. No effect on longer-term trends is detected, though for the sample data analysed we observe a mean increase of 2.8 DU (0.82 %) with respect to the traditional direct sun vs. zenith sky average choice. To complement the new calculation of a best representative value of total column ozone and separate its uncertainty from the spread of observations, we also propose reporting its standard error rather than the standard deviation, together with measures of the full range of values observed.


Sign in / Sign up

Export Citation Format

Share Document