Bio-signal based motion control system using deep learning models: a deep learning approach for motion classification using EEG and EMG signal fusion

Author(s):  
Heba Aly ◽  
Sherin M. Youssef
2021 ◽  
Vol 29 (2) ◽  
pp. 423-435
Author(s):  
Rihem Farkh ◽  
Khaled Al jaloud ◽  
Saad Alhuwaimel ◽  
Mohammad Tabrez Quasim ◽  
Moufida Ksouri

2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2021 ◽  
Vol 11 (9) ◽  
pp. 3952
Author(s):  
Shimin Tang ◽  
Zhiqiang Chen

With the ubiquitous use of mobile imaging devices, the collection of perishable disaster-scene data has become unprecedentedly easy. However, computing methods are unable to understand these images with significant complexity and uncertainties. In this paper, the authors investigate the problem of disaster-scene understanding through a deep-learning approach. Two attributes of images are concerned, including hazard types and damage levels. Three deep-learning models are trained, and their performance is assessed. Specifically, the best model for hazard-type prediction has an overall accuracy (OA) of 90.1%, and the best damage-level classification model has an explainable OA of 62.6%, upon which both models adopt the Faster R-CNN architecture with a ResNet50 network as a feature extractor. It is concluded that hazard types are more identifiable than damage levels in disaster-scene images. Insights are revealed, including that damage-level recognition suffers more from inter- and intra-class variations, and the treatment of hazard-agnostic damage leveling further contributes to the underlying uncertainties.


Sign in / Sign up

Export Citation Format

Share Document