scholarly journals Understanding Natural Disaster Scenes from Mobile Images Using Deep Learning

2021 ◽  
Vol 11 (9) ◽  
pp. 3952
Author(s):  
Shimin Tang ◽  
Zhiqiang Chen

With the ubiquitous use of mobile imaging devices, the collection of perishable disaster-scene data has become unprecedentedly easy. However, computing methods are unable to understand these images with significant complexity and uncertainties. In this paper, the authors investigate the problem of disaster-scene understanding through a deep-learning approach. Two attributes of images are concerned, including hazard types and damage levels. Three deep-learning models are trained, and their performance is assessed. Specifically, the best model for hazard-type prediction has an overall accuracy (OA) of 90.1%, and the best damage-level classification model has an explainable OA of 62.6%, upon which both models adopt the Faster R-CNN architecture with a ResNet50 network as a feature extractor. It is concluded that hazard types are more identifiable than damage levels in disaster-scene images. Insights are revealed, including that damage-level recognition suffers more from inter- and intra-class variations, and the treatment of hazard-agnostic damage leveling further contributes to the underlying uncertainties.

Author(s):  
V. Punitha ◽  
C. Mala

The recent technological transformation in application deployment, with the enriched availability of applications, induces the attackers to shift the target of the attack to the services provided by the application layer. Application layer DoS or DDoS attacks are launched only after establishing the connection to the server. They are stealthier than network or transport layer attacks. The existing defence mechanisms are unproductive in detecting application layer DoS or DDoS attacks. Hence, this chapter proposes a novel deep learning classification model using an autoencoder to detect application layer DDoS attacks by measuring the deviations in the incoming network traffic. The experimental results show that the proposed deep autoencoder model detects application layer attacks in HTTP traffic more proficiently than existing machine learning models.


2020 ◽  
Vol 5 (2) ◽  
pp. 212
Author(s):  
Hamdi Ahmad Zuhri ◽  
Nur Ulfa Maulidevi

Review ranking is useful to give users a better experience. Review ranking studies commonly use upvote value, which does not represent urgency, and it causes problems in prediction. In contrast, manual labeling as wide as the upvote value range provides a high bias and inconsistency. The proposed solution is to use a classification approach to rank the review where the labels are ordinal urgency class. The experiment involved shallow learning models (Logistic Regression, Naïve Bayesian, Support Vector Machine, and Random Forest), and deep learning models (LSTM and CNN). In constructing a classification model, the problem is broken down into several binary classifications that predict tendencies of urgency depending on the separation of classes. The result shows that deep learning models outperform other models in classification dan ranking evaluation. In addition, the review data used tend to contain vocabulary of certain product domains, so further research is needed on data with more diverse vocabulary.


2022 ◽  
Author(s):  
Maede Maftouni ◽  
Bo Shen ◽  
Andrew Chung Chee Law ◽  
Niloofar Ayoobi Yazdi ◽  
Zhenyu Kong

<p>The global extent of COVID-19 mutations and the consequent depletion of hospital resources highlighted the necessity of effective computer-assisted medical diagnosis. COVID-19 detection mediated by deep learning models can help diagnose this highly contagious disease and lower infectivity and mortality rates. Computed tomography (CT) is the preferred imaging modality for building automatic COVID-19 screening and diagnosis models. It is well-known that the training set size significantly impacts the performance and generalization of deep learning models. However, accessing a large dataset of CT scan images from an emerging disease like COVID-19 is challenging. Therefore, data efficiency becomes a significant factor in choosing a learning model. To this end, we present a multi-task learning approach, namely, a mask-guided attention (MGA) classifier, to improve the generalization and data efficiency of COVID-19 classification on lung CT scan images.</p><p>The novelty of this method is compensating for the scarcity of data by employing more supervision with lesion masks, increasing the sensitivity of the model to COVID-19 manifestations, and helping both generalization and classification performance. Our proposed model achieves better overall performance than the single-task baseline and state-of-the-art models, as measured by various popular metrics. In our experiment with different percentages of data from our curated dataset, the classification performance gain from this multi-task learning approach is more significant for the smaller training sizes. Furthermore, experimental results demonstrate that our method enhances the focus on the lesions, as witnessed by both</p><p>attention and attribution maps, resulting in a more interpretable model.</p>


2019 ◽  
Vol 21 (16) ◽  
pp. 4555-4565 ◽  
Author(s):  
Zihao Wang ◽  
Yang Su ◽  
Weifeng Shen ◽  
Saimeng Jin ◽  
James H. Clark ◽  
...  

A deep learning approach coupling the Tree-LSTM network and back-propagation neural network for predicting the octanol–water partition coefficient.


2020 ◽  
Author(s):  
Haiming Tang ◽  
Nanfei Sun ◽  
Steven Shen

Artificial intelligence (AI) has an emerging progress in diagnostic pathology. A large number of studies of applying deep learning models to histopathological images have been published in recent years. While many studies claim high accuracies, they may fall into the pitfalls of overfitting and lack of generalization due to the high variability of the histopathological images. We use the example of Osteosarcoma to illustrate the pitfalls and how the addition of model input variability can help improve model performance. We use the publicly available osteosarcoma dataset to retrain a previously published classification model for osteosarcoma. We partition the same set of images into the training and testing datasets differently than the original study: the test dataset consists of images from one patient while the training dataset consists images of all other patients. The performance of the model on the test set using the new partition schema declines dramatically, indicating a lack of model generalization and overfitting.We also show the influence of training data variability on model performance by collecting a minimal dataset of 10 osteosarcoma subtypes as well as benign tissues and benign bone tumors of differentiation. We show the additions of more and more subtypes into the training data step by step under the same model schema yield a series of coherent models with increasing performances. In conclusion, we bring forward data preprocessing and collection tactics for histopathological images of high variability to avoid the pitfalls of overfitting and build deep learning models of higher generalization abilities.


2020 ◽  
Vol 39 (4) ◽  
pp. 4935-4945
Author(s):  
Qiuyun Cheng ◽  
Yun Ke ◽  
Ahmed Abdelmouty

Aiming at the limitation of using only word features in traditional deep learning sentiment classification, this paper combines topic features with deep learning models to build a topic-fused deep learning sentiment classification model. The model can fuse topic features to obtain high-quality high-level text features. Experiments show that in binary sentiment classification, the highest classification accuracy of the model can reach more than 90%, which is higher than that of commonly used deep learning models. This paper focuses on the combination of deep neural networks and emerging text processing technologies, and improves and perfects them from two aspects of model architecture and training methods, and designs an efficient deep network sentiment analysis model. A CNN (Convolutional Neural Network) model based on polymorphism is proposed. The model constructs the CNN input matrix by combining the word vector information of the text, the emotion information of the words, and the position information of the words, and adjusts the importance of different feature information in the training process by means of weight control. The multi-objective sample data set is used to verify the effectiveness of the proposed model in the sentiment analysis task of related objects from the classification effect and training performance.


2020 ◽  
Vol 12 (10) ◽  
pp. 1581 ◽  
Author(s):  
Daniel Perez ◽  
Kazi Islam ◽  
Victoria Hill ◽  
Richard Zimmerman ◽  
Blake Schaeffer ◽  
...  

Coastal ecosystems are critically affected by seagrass, both economically and ecologically. However, reliable seagrass distribution information is lacking in nearly all parts of the world because of the excessive costs associated with its assessment. In this paper, we develop two deep learning models for automatic seagrass distribution quantification based on 8-band satellite imagery. Specifically, we implemented a deep capsule network (DCN) and a deep convolutional neural network (CNN) to assess seagrass distribution through regression. The DCN model first determines whether seagrass is presented in the image through classification. Second, if seagrass is presented in the image, it quantifies the seagrass through regression. During training, the regression and classification modules are jointly optimized to achieve end-to-end learning. The CNN model is strictly trained for regression in seagrass and non-seagrass patches. In addition, we propose a transfer learning approach to transfer knowledge in the trained deep models at one location to perform seagrass quantification at a different location. We evaluate the proposed methods in three WorldView-2 satellite images taken from the coastal area in Florida. Experimental results show that the proposed deep DCN and CNN models performed similarly and achieved much better results than a linear regression model and a support vector machine. We also demonstrate that using transfer learning techniques for the quantification of seagrass significantly improved the results as compared to directly applying the deep models to new locations.


2020 ◽  
Vol 12 (6) ◽  
pp. 923 ◽  
Author(s):  
Kuiliang Gao ◽  
Bing Liu ◽  
Xuchu Yu ◽  
Jinchun Qin ◽  
Pengqiang Zhang ◽  
...  

Deep learning has achieved great success in hyperspectral image classification. However, when processing new hyperspectral images, the existing deep learning models must be retrained from scratch with sufficient samples, which is inefficient and undesirable in practical tasks. This paper aims to explore how to accurately classify new hyperspectral images with only a few labeled samples, i.e., the hyperspectral images few-shot classification. Specifically, we design a new deep classification model based on relational network and train it with the idea of meta-learning. Firstly, the feature learning module and the relation learning module of the model can make full use of the spatial–spectral information in hyperspectral images and carry out relation learning by comparing the similarity between samples. Secondly, the task-based learning strategy can enable the model to continuously enhance its ability to learn how to learn with a large number of tasks randomly generated from different data sets. Benefitting from the above two points, the proposed method has excellent generalization ability and can obtain satisfactory classification results with only a few labeled samples. In order to verify the performance of the proposed method, experiments were carried out on three public data sets. The results indicate that the proposed method can achieve better classification results than the traditional semisupervised support vector machine and semisupervised deep learning models.


Sign in / Sign up

Export Citation Format

Share Document