Limestones under salt decay tests: assessment of pore network-dependent durability predictors

2011 ◽  
Vol 63 (7-8) ◽  
pp. 1511-1527 ◽  
Author(s):  
Carlos Alves ◽  
Carlos Figueiredo ◽  
António Maurício ◽  
Maria Amália Sequeira Braga ◽  
Luís Aires-Barros
Keyword(s):  
2021 ◽  
pp. 1-8
Author(s):  
Hua Zhang ◽  
T. S. Ramakrishnan ◽  
Quincy Kurleigh Elias

Summary Low-melting-point bismuth- (Bi-) based alloys have recently been proposed for plug-and-abandonment (P&A). Previous experiments have shown the feasibility of BiSn [58-wt% Bi and 42-wt% tin (Sn)] and BiAg [97.5-wt% Bi and 2.5-wt% silver (Ag)] alloy plugs in moderate temperature wells, both across shales and across the shale/sandstone sequence. These were validated in linear and cylindrical wellbore cavity geometries for various differential setting pressures for alloy over air. Until now, all of the experiments for setting alloy plugs have been conducted with air as the wetting fluid. Given the lack of adhesion between minerals and alloy, our concept for providing bond strength and integrity has hinged on providing a bicontinuous structure through alloy penetration into the pore network. For shales, with a positive setting pressure, anchors on the surface, in lieu of pores, have proven to be adequate. With results obtained under excess alloy pressure, we have quantified the effect of setting pressure on the alloy/shale bond quality. With brine as the wetting fluid, imposing an excess pressure on the alloy has not been demonstrated previously. This paper is the continuation of our previously published papers (Zhang et al. 2020a, 2020b), and our objective here is not only to show the possibility of forming a plug under brine but also to quantify the plug’s quality with and without an excess alloy pressure. We first describe an apparatus that controls alloy and brine pressures independently through a semipermeable piston assembly and demonstrate forming alloy plugs in a brine-filled borehole cavity. Based on pressure decay tests across the plug, we demonstrate that wellbore integrity is possible only with a positive alloy pressure over that of brine.


2018 ◽  
Vol 21 (4) ◽  
pp. 329-341 ◽  
Author(s):  
Jian Hou ◽  
Bei Wei ◽  
Kang Zhou ◽  
Qingjun Du
Keyword(s):  

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


Sign in / Sign up

Export Citation Format

Share Document