China pursues a strict water resources management system

2014 ◽  
Vol 72 (6) ◽  
pp. 2219-2222 ◽  
Author(s):  
Qiting Zuo ◽  
Runfang Jin ◽  
Junxia Ma ◽  
Guotao Cui
2016 ◽  
Vol 17 (1) ◽  
pp. 238-245 ◽  
Author(s):  
Ming Dou ◽  
Yanyan Wang

Establishing a modern water rights system (WRS) that is suited to the Strictest Water Resources Management System (SWRM) is an important reform in China's water resources management in terms of addressing current water issues. However, there are still several problems in the construction of a WRS, such as ambiguity in the definition of water rights, weakness in the infrastructure of water rights and imperfect WRS legislation. Moreover, water rights allocation (WRA) and water rights trading (WRT), which are two core components of water rights, still have some problems that remain to be solved. The ‘Three Red Lines’, which make up the core of the SWRM, are expounded upon, and the relationship between the WRS and the SWRM is analyzed. Finally, some appropriate recommendations based on the ‘Three Red Lines’ are provided to perfect the WRS so that it is suitable for the SWRM. In this paper, we conclude that the WRS is a type of water resource management that can effectively solve the current water issues in China. Significant efforts have been made in the construction of the WRS, which has achieved remarkable success in a period of exploration and practice in China. The construction of the WRS supports sustainable social and economic development and results in harmonious relationships between humans and nature.


2018 ◽  
Vol 40 (2) ◽  
pp. 66
Author(s):  
Ignasius Dwi Atmana Sutapa ◽  
Eni Maftuah ◽  
Astried Sunaryani ◽  
Hidayat Pawitan

Peat swamp forest is a unique and fragile ecosystem, with specific flora and fauna that play important roles in maintaining healthy natural conditions with high economic values. This habitat also has important role for equilibrium and maintenance of living environment such as water reservoir, carbon storage, climate change, and biodiversity. Utilization of peatland for agriculture, plantations, and other activities often lead not only to controversy, but also cause land and ecosystem degradation, including water resources availability. The objective of this research was to study comprehensive ecohydrology aspects in ex-mega rice project in Central Kalimantan in order to support sustainable agricultural practices and water resources management in peatland areas. The results of the study showed that the sustainability of agricultural systems in peatland was strongly influenced by ecological aspect. This aspect can be carried out from the condition of water management system, water color condition, and possible incidence of fires. The level of suitability for crops plantation was low (S3), with the limiting factors of pH, nutrient availability, and the risk of inundation. In this case, water gates should be installed to improve water management system. Water quality in this area was typical of peat water and do not meet the requirement for daily use for the local people.


2011 ◽  
Vol 7 (1) ◽  
pp. 83-90 ◽  
Author(s):  
W.-A. Flügel ◽  
C. Busch

Abstract. One of the innovative objectives in the EC project BRAHMATWINN was the development of a stakeholder oriented Integrated Water Resources Management System (IWRMS). The toolset integrates the findings of the project and presents it in a user friendly way for decision support in sustainable integrated water resources management (IWRM) in river basins. IWRMS is a framework, which integrates different types of basin information and which supports the development of IWRM options for climate change mitigation. It is based on the River Basin Information System (RBIS) data models and delivers a graphical user interface for stakeholders. A special interface was developed for the integration of the enhanced DANUBIA model input and the NetSyMod model with its Mulino decision support system (mulino mDss) component. The web based IWRMS contains and combines different types of data and methods to provide river basin data and information for decision support. IWRMS is based on a three tier software framework which uses (i) html/javascript at the client tier, (ii) PHP programming language to realize the application tier, and (iii) a postgresql/postgis database tier to manage and storage all data, except the DANUBIA modelling raw data, which are file based and registered in the database tier. All three tiers can reside on one or different computers and are adapted to the local hardware infrastructure. IWRMS as well as RBIS are based on Open Source Software (OSS) components and flexible and time saving access to that database is guaranteed by web-based interfaces for data visualization and retrieval. The IWRMS is accessible via the BRAHMATWINN homepage: http://www.brahmatwinn.uni-jena.de and a user manual for the RBIS is available for download as well.


Sign in / Sign up

Export Citation Format

Share Document