Integrated urban water management: development of an adapted management approach

2014 ◽  
Vol 73 (2) ◽  
pp. 709-718 ◽  
Author(s):  
Rost Grit ◽  
Londong Jörg ◽  
Dietze Steffen ◽  
Osor Gerel
2010 ◽  
Vol 2010 (9) ◽  
pp. 6734-6753 ◽  
Author(s):  
Shiroma Maheepala ◽  
Jane Blackmore ◽  
Clare Diaper ◽  
Magnus Moglia ◽  
Ashok Sharma ◽  
...  

2020 ◽  
Vol 34 (13) ◽  
pp. 4253-4269 ◽  
Author(s):  
José Matheus Bezerra dos Santos Amorim ◽  
Saulo de Tarso Marques Bezerra ◽  
Maísa Mendonça Silva ◽  
Lyanne Cibely Oliveira de Sousa

2006 ◽  
Vol 6 (2) ◽  
pp. 1-7 ◽  
Author(s):  
J. Hunt ◽  
M. Anda ◽  
K. Mathew ◽  
G. Ho

Integrated Urban Water Management (IUWM) in land developments is becoming increasingly necessary in order to more efficiently utilise and manage water resources. Techniques including the control of stormwater runoff, increasing infiltration and providing opportunities for retention, treatment and reuse of both stormwater and wastewater, are well suited to being designed into the development rather than considered post-construction or not at all. There can be extensive capital investment by developers to implement IUWM which is often not returned in the land sales. This produces a disincentive for the developer unless the contribution is recognised and rewarded either financially or with appropriate marketing advantage. A system to rate land developments based upon IUWM has been developed that would quantifiably assess how effectively water resources would be utilised in a proposed land development. This assessment would provide a point of comparison between developments allowing property purchasers, developers, utilities and legislators to quickly compare how well the development performs in terms of IUWM, providing a mechanism for financial reward or recognition. This paper discusses the development of a model to quantifiably assess land developments for water efficient use and introduces a rating system with which land developments can be compared in terms of IUWM.


Author(s):  
S. Chandran ◽  
S. R. Thiruchelve ◽  
M. Dhanasekarapandian

Abstract Economic growth of any nation like India depends on growth of cities. In India 31% of total population exists in urban extent. Smart City mission of India was established with the objective to deliver the basic requirements of the citizens in a sustainable manner. Madurai city located at Peninsular India with 1.4 Million population was taken for this study. The objective is to develop an Integrated Urban Water Management Strategy after analysing all the components of Urban Water Cycle such as rainfall, runoff, groundwater and wastewater. The population forecast for 2021 was done for the Local Planning Area (LPA) of 726.34 km2 and the water demand was calculated as 109 Mm3/year. To meet the demand, runoff from the average rainfall was estimated as 393 Mm3/yr using SCS-CN method. The storage capacity in the water bodies to store the Surface water was estimated as 156 Mm3/yr and groundwater recharge potential was estimated as 22 Mm3/yr. The Integrated Urban Water Management strategy developed, shows that there is a huge potential for rainwater storage at the surface level and subsequent recharge through artificial recharge techniques.


2005 ◽  
Vol 51 (10) ◽  
pp. 21-27 ◽  
Author(s):  
J. Hunt ◽  
M. Anda ◽  
K. Mathew ◽  
G. Ho ◽  
G. Priest

Integrated Urban Water Management (IUWM) seeks to extend Water Sensitive Urban Design to a total water cycle approach that includes reuse of wastewaters. This paper investigates the appropriateness of environmental technologies for application at a cluster scale in IUWM. Many environmental technologies are economically or physically unsuited to use on a municipal or unit scale. Cluster scale is a middle ground that will allow such environmental technologies to achieve full potential. The concept of cluster scale and the application of environmental technologies at this scale are discussed along with some examples of suitable technologies.


Sign in / Sign up

Export Citation Format

Share Document