scholarly journals Influence of subsurface drainage systems on nitrate pollution of water supply aquifer (Tursko well-field, Poland)

2016 ◽  
Vol 75 (2) ◽  
Author(s):  
Krzysztof Dragon ◽  
Dariusz Kasztelan ◽  
Jozef Gorski ◽  
Joanna Najman
2006 ◽  
Author(s):  
Gary R. Sands ◽  
Inhong Song ◽  
Lowell M. Busman ◽  
Bradley Hansen

Author(s):  
Marina Valentukeviciene ◽  
Aukse Amosenkiene ◽  
Regimantas Dauknys

Quality changes of drinking water in the water supply network (case study from Lithuania) The purpose of this research was to examine water quality changes by distributing in to the water supply network. Water samples were collected from Varena town (Lithuania) drinking water distribution system fed by groundwater from well field. Parameters related to undesirable increasing of nitrites and nitrates concentrations have been measured considering these samples: pH, conductivity, concentration of total iron, manganese, ammonium, nitrates and nitrites. Results showed that groundwater from well field were extremely susceptible to favor bacterial growth in the pipelines. The occurrence of nitrites and nitrates in drinking water samples correlated positively with the lengths of old iron pipelines and negatively with the content of newly laid pipelines. The obtained results also showed that the potential nitrates increasing induced by the distribution of treated water could be reduced if: nitrates levels were below detection limits at the outlet of the water treatment plant; biological ammonium removal treatment implementation should reduce the levels of the nitrates and nitrites of the treated supplied water. Although the nitrates concentration increase in drinking water distribution systems, the issues with nitrites accumulation are rare in Lithuania. However, such processes still need to be proved in more extensive investigation, but these research results could be applied as a basic scenario.


2018 ◽  
Vol 67 ◽  
pp. 40-50 ◽  
Author(s):  
Idris Bahçeci ◽  
Abdullah Suat Nacar ◽  
Lui Topalhasan ◽  
Ali Fuat Tari ◽  
Henk P. Ritzema

2017 ◽  
Vol 33 (6) ◽  
pp. 793-799 ◽  
Author(s):  
R. Wayne Skaggs

Abstract. It is proposed that technical papers on drainage research studies and engineered design projects should report standard coefficients or parameters that characterize the hydraulics of the system. The following coefficients define key subsurface drainage rates that can be used to quantify and compare the hydraulics of drainage systems across sites, soils and geographic locations. (1) The steady subsurface drainage rate (cm/d) corresponding to a saturated profile with a ponded surface. This subsurface drainage rate defines the length of time that water remains ponded on the soil surface following large rainfall events. It is proposed that this rate be called the Kirkham Coefficient (KC) in honor of Professor Don Kirkham who derived analytical solutions for saturated drained profiles for most soil and boundary conditions of interest. (2) Drainage intensity (DI), which represents the drainage rate (cm/d) when the water table midway between parallel drains is coincident with the surface. The DI can be estimated by the Hooghoudt equation and is dependent on the effective saturated hydraulic conductivity of the profile, drain depth, spacing, and depth of the soil profile or restrictive layer. (3) The drainage coefficient (DC), which quantifies the hydraulic capacity of the system. This value is the rate (cm/d) that the outlet works can remove water from the site. It is dependent on the size, slope, and hydraulic roughness of the laterals, submains, mains, and, in cases where pumped outlets are used, the pumping capacity. Routine inclusion of these three coefficients in the documentation of research and design projects would facilitate comparison of results from different soils and drainage systems, and generally, the meta-analysis of data pertaining to drainage studies. Keywords: Drainage, Drainage intensity, Drainage coefficient, Drainage nomenclature, Kirkham Coefficient.


2016 ◽  
Vol 87 ◽  
pp. 56-67 ◽  
Author(s):  
Pei Xin ◽  
Xiayang Yu ◽  
Chunhui Lu ◽  
Ling Li

Sign in / Sign up

Export Citation Format

Share Document