X-Ray Reflectivity and Diffraction Studies of Doxorubicin Binding to Model Lipid Membranes

2020 ◽  
Vol 10 (3) ◽  
pp. 618-624
Author(s):  
Natalia Novikova ◽  
Mikhail Kovalchuk ◽  
Oleg Konovalov ◽  
Nina Stepina ◽  
Alexandr Rogachev ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Benedetta Marmiroli ◽  
Barbara Sartori ◽  
Adriana R. Kyvik ◽  
Imma Ratera ◽  
Heinz Amenitsch

Mesoporous materials feature ordered tailored structures with uniform pore sizes and highly accessible surface areas, making them an ideal host for functional organic molecules or nanoparticles for analytical and sensing applications. Moreover, as their porosity could be employed to deliver fluids, they could be suitable materials for nanofluidic devices. As a first step in this direction, we present a study of the hydration of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model lipid membranes on solid mesoporous support. POPC was selected as it changes the structure upon hydration at room temperature. Mesoporous films were prepared using two different templating agents, Pluronic P123 (PEO–PPO–PEO triblock copolymer where PEO is polyethylene oxide and PPO is polypropylene oxide) and Brij 58 (C16H33(EO)20OH where EO is ethylene oxide), both following the conventional route and by X-ray irradiation via deep X-ray lithography technique and subsequent development. The same samples were additionally functionalized with a self-assembly monolayer (SAM) of (3-aminopropyl)triethoxysilane. For every film, the contact angle was measured. A time resolved structural study was conducted using in situ grazing incidence small-angle X-ray scattering while increasing the external humidity (RH), from 15 to 75% in a specially designed chamber. The measurements evidenced that the lipid membrane hydration on mesoporous films occurs at a lower humidity value with respect to POPC deposited on silicon substrates, demonstrating the possibility of using porosity to convey water from below. A different level of hydration was reached by using the mesoporous thin film prepared with conventional methods or the irradiated ones, or by functionalizing the film using the SAM strategy, meaning that the hydration can be partially selectively tuned. Therefore, mesoporous films can be employed as “interactive” sample holders with specimens deposited on them. Moreover, thanks to the possibility of patterning the films using deep X-ray lithography, devices for biological studies of increasing complexity by selectively functionalizing the mesopores with biofunctional SAMs could be designed and fabricated.


Soft Matter ◽  
2018 ◽  
Vol 14 (43) ◽  
pp. 8750-8763 ◽  
Author(s):  
Josefine Eilsø Nielsen ◽  
Victoria Ariel Bjørnestad ◽  
Reidar Lund

Using small angle X-ray and neutron scattering and theoretical modelling we have elucidated the structure of the antimicrobial peptide, indolicidin, and the interaction with model lipid membranes of different anionic lipid compositions mimicking charge densities found in the cytoplasmic membrane of bacteria.


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


2005 ◽  
Vol 70 (5) ◽  
pp. 668-675 ◽  
Author(s):  
Monika Hereć ◽  
Halina Dziubińska ◽  
Kazimierz Trębacz ◽  
Jacek W. Morzycki ◽  
Wiesław I. Gruszecki

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77115 ◽  
Author(s):  
Martin Loynaz Prieto ◽  
Ömer Oralkan ◽  
Butrus T. Khuri-Yakub ◽  
Merritt C. Maduke

Sign in / Sign up

Export Citation Format

Share Document