Allelic variation and composition of HMW-GS in advanced lines derived from d-genome synthetic hexaploid / bread wheat (Triticum aestivum L.)

2012 ◽  
Vol 15 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Awais Rasheed ◽  
Tariq Mahmood ◽  
Alvina Gul Kazi ◽  
Abdul Ghafoor ◽  
Abdul Mujeeb-Kazi
Genome ◽  
2005 ◽  
Vol 48 (6) ◽  
pp. 1120-1126 ◽  
Author(s):  
Didier Lamoureux ◽  
Daniel G Peterson ◽  
Wanlong Li ◽  
John P Fellers ◽  
Bikram S Gill

We report the results of a study on the effectiveness of Cot filtration (CF) in the characterization of the gene space of bread wheat (Triticum aestivum L.), a large genome species (1C = 16 700 Mb) of tremendous agronomic importance. Using published Cot data as a guide, 2 genomic libraries for hexaploid wheat were constructed from the single-stranded DNA collected at Cot values > 1188 and 1639 M·s. Compared with sequences from a whole genome shotgun library from Aegilops tauschii (the D genome donor of bread wheat), the CF libraries exhibited 13.7-fold enrichment in genes, 5.8-fold enrichment in unknown low-copy sequences, and a 3-fold reduction in repetitive DNA. CF is twice as efficient as methylation filtration at enriching wheat genes. This research suggests that, with improvements, CF will be a highly useful tool in sequencing the gene space of wheat.Key words: gene enrichment, renaturation kinetics, gene-rich regions, bread wheat.


Genome ◽  
1992 ◽  
Vol 35 (2) ◽  
pp. 276-282 ◽  
Author(s):  
D. Bai ◽  
D. R. Knott

Several tests were done in bread wheat (Triticum aestivum L.) to demonstrate the occurrence of genes on D-genome chromosomes that suppress resistance to leaf rust (Puccinia recondita f. sp. tritici Rob. ex Desm.) and stem rust (Puccinia graminis f. sp. tritici Eriks. &Henn.). Ten rust-resistant wild tetraploid wheats (T. turgidum var. dicoccoides) were crossed with both durum (T. turgidum var. durum) and bread wheats. In all cases, resistance to leaf rust and stem rust was expressed in the hybrids with durum wheats but suppressed in the hybrids with bread wheats. Crosses were made between five diverse durum wheats and four diverse bread wheats. The pentaploid hybrid seedlings of 12 crosses were tested with leaf rust race 15 and in all cases the resistance of the durum parents was suppressed. Fourteen D-genome disomic chromosome substitution lines in the durum wheat 'Langdon' were tested with stem rust race 15B-1 and leaf rust race 15. Chromosomes 1B, 2B, and 7B were found to carry genes for resistance to stem rust but no suppressors were detected. Chromosomes 2B and 4B carried genes for resistance to leaf rust, and 1D and 3D carried suppressors. Crosses between seven D-genome monosomies of 'Chinese Spring' and three dicoccoides accessions showed that 'Chinese Spring' possesses genes on 1D, 2D, and 4D, which suppress the stem rust resistance of all three dicoccoides accessions. All three chromosomes must be present to suppress resistance, indicating that some form of complementary gene interaction is involved. In addition, 'Chinese Spring' carries a gene or genes on 3D that suppresses the leaf rust resistance of all three dicoccoides accessions, plus a gene or genes on 1D that suppresses the leaf rust resistance of only one of them. The data raise some interesting questions about the specificity of the suppressors. The high frequency of occurrence of suppressors in the bread wheat population suggests that they must have a selective advantage.Key words: Triticum aestivum, stem rust, leaf rust, rust resistance, suppressor.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 2007-2023 ◽  
Author(s):  
Marion S Röder ◽  
Victor Korzun ◽  
Katja Wendehake ◽  
Jens Plaschke ◽  
Marie-Hélène Tixier ◽  
...  

Abstract Hexaploid bread wheat (Triticum aestivum L. em. Thell) is one of the world's most important crop plants and displays a very low level of intraspecific polymorphism. We report the development of highly polymorphic microsatellite markers using procedures optimized for the large wheat genome. The isolation of microsatellite-containing clones from hypomethylated regions of the wheat genome increased the proportion of useful markers almost twofold. The majority (80%) of primer sets developed are genome-specific and detect only a single locus in one of the three genomes of bread wheat (A, B, or D). Only 20% of the markers detect more than one locus. A total of 279 loci amplified by 230 primer sets were placed onto a genetic framework map composed of RFLPs previously mapped in the reference population of the International Triticeae Mapping Initiative (ITMI) Opata 85 × W7984. Sixty-five microsatellites were mapped at a LOD >2.5, and 214 microsatellites were assigned to the most likely intervals. Ninety-three loci were mapped to the A genome, 115 to the B genome, and 71 to the D genome. The markers are randomly distributed along the linkage map, with clustering in several centromeric regions.


2001 ◽  
Vol 29 (3-4) ◽  
pp. 331-338 ◽  
Author(s):  
I. N. Xynias ◽  
I. A. Zamani ◽  
E. Gouli-Vavdinoudi ◽  
D. G. Roupakias

2021 ◽  
Vol 20 (5) ◽  
pp. 1180-1192
Author(s):  
Meng-jiao YANG ◽  
Cai-rong WANG ◽  
Muhammad Adeel HASSAN ◽  
Yu-ying WU ◽  
Xian-chun XIA ◽  
...  

2010 ◽  
Vol 121 (5) ◽  
pp. 941-950 ◽  
Author(s):  
Hao Bing Li ◽  
Guo Qiang Xie ◽  
Jun Ma ◽  
Gui Ru Liu ◽  
Shu Min Wen ◽  
...  

2005 ◽  
Vol 6 (1) ◽  
pp. 81-81
Author(s):  
Rosy Raman ◽  
Harsh Raman ◽  
Katie Johnstone ◽  
Chris Lisle ◽  
Alison Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document