Character-level text classification via convolutional neural network and gated recurrent unit

2020 ◽  
Vol 11 (8) ◽  
pp. 1939-1949
Author(s):  
Bing Liu ◽  
Yong Zhou ◽  
Wei Sun
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 15561-15569
Author(s):  
Narisa Zhao ◽  
Huan Gao ◽  
Xin Wen ◽  
Hui Li

2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
A. A. Masrur Ahmed ◽  
Ravinesh C Deo ◽  
Nawin Raj ◽  
Afshin Ghahramani ◽  
Qi Feng ◽  
...  

Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management.


2019 ◽  
Vol 14 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Shuai Zhang ◽  
Yong Chen ◽  
Xiaoling Huang ◽  
Yishuai Cai

Online feedback is an effective way of communication between government departments and citizens. However, the daily high number of public feedbacks has increased the burden on government administrators. The deep learning method is good at automatically analyzing and extracting deep features of data, and then improving the accuracy of classification prediction. In this study, we aim to use the text classification model to achieve the automatic classification of public feedbacks to reduce the work pressure of administrator. In particular, a convolutional neural network model combined with word embedding and optimized by differential evolution algorithm is adopted. At the same time, we compared it with seven common text classification models, and the results show that the model we explored has good classification performance under different evaluation metrics, including accuracy, precision, recall, and F1-score.


Sign in / Sign up

Export Citation Format

Share Document