FGP approach and Rouben ranking function to bi-level multi-objective quadratic fractional problem with trapezoidal fuzzy numbers and soft fuzzy constraints

Author(s):  
Namrata Rani ◽  
Vandana Goyal ◽  
Deepak Gupta
2018 ◽  
Vol 15 (1) ◽  
pp. 98-101
Author(s):  
Baghdad Science Journal

In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains


Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 317-338
Author(s):  
Murshid Kamal ◽  
Ali Alarjani ◽  
Ahteshamul Haq ◽  
Faiz Noor Khan Yusufi ◽  
Irfan Ali

The problem of transportation in real-life is an uncertain multi-objective decision-making problem. In particular, by taking into account the conflicting objectives, Decision-Makers (DMs) are looking for the best transport set up to determine the optimum shipping quantity subject to certain capacity constraints on each route. This paper presented a Multi-Objective Transportation Problem (MOTP) where the objective functions are considered as Type-2 trapezoidal fuzzy numbers (T2TpFN), respectively. Demand and supply in constraints are in multi-choice and probabilistic random variables, respectively. Also considered the “rate of increment in Transportation Cost (TC) and rate of decrement in profit on transporting the products from ith sources to jth destinations due to” (or additional cost) of each product due to the damage, late deliveries, weather conditions, and any other issues. Due to the presence of all these uncertainties, it is not possible to obtain the optimum solution directly, so first, we need to convert all these uncertainties from the model into a crisp equivalent form. The two-phase defuzzification technique is used to transform T2TpFN into a crisp equivalent form. Multi-choice and probabilistic random variables are transformed into an equivalent value using Stochastic Programming (SP) approach and the binary variable, respectively. It is assumed that the supply and demand parameter follows various types of probabilistic distributions like Weibull, Extreme value, Cauchy and Pareto, Normal distribution, respectively. The unknown parameters of probabilistic distributions estimated using the maximum likelihood estimation method at the defined probability level. The best fit of the probability distributions is determined using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), respectively. Using the Fuzzy Goal Programming (FGP) method, the final problem is solved for the optimal decision. A case study is intended to provide the effectiveness of the proposed work.


2013 ◽  
Vol 5 (3) ◽  
pp. 373-380
Author(s):  
Zeinab Kheiri ◽  
Faezeh Zahmatkesh ◽  
Bing-Yuan Cao

2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


Sign in / Sign up

Export Citation Format

Share Document