scholarly journals Development prediction and the theoretical analysis in the ultra-high water cut stage for water-flooding sandstone reservoirs

2016 ◽  
Vol 7 (1) ◽  
pp. 103-109
Author(s):  
Jianpeng Xu ◽  
Chuanzhi Cui ◽  
Zhiying Ding ◽  
Peng Xu ◽  
Ronghua Yao ◽  
...  
Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


2019 ◽  
Vol 64 (26) ◽  
pp. 2751-2760 ◽  
Author(s):  
Jun Yao ◽  
Lei Zhang ◽  
Hai Sun ◽  
Tao Huang ◽  
Yongfei Yang ◽  
...  

Author(s):  
Kuiqian Ma ◽  
Ao Li ◽  
Shuhao Guo ◽  
Jieqiong Pang ◽  
Yongchao Xue ◽  
...  

The multi-layer co-exploitation method is often used in offshore oilfields because of the large spacing between the injection and production wells. As oilfields gradually enter the high water-cut stage, the contradiction between the horizontal and vertical directions becomes more prominent, and the distribution of the remaining oil is more complex. Oilfields are facing unprecedented challenges in further enhancing oil recovery. Using oilfield A, which is in the high water-cut stage, as the research object, we compiled a detailed description of the remaining oil during the high water-cut stage using the information collected during the comprehensive adjustment and infilling of the oilfield. In addition various techniques for tapping the potential reservoir, stabilizing the oil, and controlling the water were investigated. A set of key techniques for the continuous improvement of the efficiency of water injection after comprehensive adjustment of high water-cut fields was generated. Based on the determined configuration of the offshore deltaic reservoir, a set of detailed descriptive methods and tapping technology for extracting the remaining oil in the offshore high water-cut oilfield after comprehensive adjustment was established. By considering the equilibrium displacement and using a new quantitative characterization method that includes displacement, a new technique for determining the quantity of water that needs to be injected into a stratified injection well during the high water-cut stage was established. Based on the principle of flow field intensity reconfiguration, a linear, variable-intensity, alternating injection and withdrawal technique was proposed. With the application of this series of techniques, the increase in the water content was controlled to within 1%, the natural reduction rate was controlled to within 9%, and the production increased by 1.060 × 107 m3.


2012 ◽  
Vol 591-593 ◽  
pp. 2555-2558
Author(s):  
Cheng Fu ◽  
Bin Huang

The western South-eight block which is located in the comprehensive tap demonstration area of NO.2 oil production plant, has already gone through three years’ fine development. The production has been stable, the rising amplitude of comprehensive water cut has been small, and the natural decline rate has been controlled effectively. But with the deep development, this block has gone into the late ultra-high water cut stage. To maintain high efficient water flooding development is more and more difficult, therefore fine 3D geological modeling and reservoir numerical simulation work have been carried out. And some practical residual oil saturation diagrams have been put forward finally towards this block, which has provided a reliable basis for the next oilfield development.


2013 ◽  
Vol 868 ◽  
pp. 585-588
Author(s):  
Yi Kun Liu ◽  
Xue Ming Wang ◽  
Shi Yuan Shao ◽  
Ming Yang ◽  
Yong Ping Wang

East Xing Six District of Daqing oilfield development has 50 years of history, the block has entered high well density, high water cut stage. The apricot East Xing Six District demonstration zone development belongs to the continental sedimentary system, it has reservoir types and physical properties have large differences, It was long-term effected by injected water, after water flooding, water degree condition becomes very complex and unpredictable, so the washing condition analysis is an important guarantee for Daqing oilfield stable production. Using the oil field sealed coring well data, various types of reservoirs washing degree thickness change and growth are analyzed, We can know that with the further water flooding development and well pattern infilling, all kinds of oil reservoir production status; and then analyzes the potential distribution of the oilfields, and provides a basis for the development of the block and the adjustment of the next step of work, has an important guiding significance.


2013 ◽  
Author(s):  
Yanming Pang ◽  
Qinglong Du ◽  
Xueyan Jiang ◽  
Junhui Guo ◽  
Lihong Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document