3d geological modeling
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 54)

H-INDEX

10
(FIVE YEARS 2)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Jixiang Zhu ◽  
Yan Lu ◽  
Guanghui Zhang ◽  
Xiaoyuan Zhou ◽  
Guangjun Ji

Accurately depicting the spatial structure characteristics of Quaternary loose sedimentary strata is not only of great significance for the research of Quaternary geological evolution, but also for the analysis of spatial variation characteristics of the inner hydrogeological and engineering geological attributes of the strata. In this study, an approach for constructing a 3D geological model of Quaternary loose sedimentary strata is proposed based on global stratigraphical discrete points. The approach obtains the discrete control point set of each stratum by using limited borehole data for interpolation and encryption, and the contact relationships and intersection modes of adjacent strata can be determined via the analysis of stratigraphic sequence; finally, taking these as the professional basis, the construction of the 3D geological model of Quaternary loose sedimentary strata can be carried out. This application can not only accurately describe the three-dimensional spatial distribution characteristics of the Quaternary loose sedimentary strata, it can also be used to perform a layered simulation of the spatial variation characteristics of the inner geological properties of the Quaternary loose sedimentary strata, such as lithology, porosity, and water content, by taking the three-dimensional spatial framework of each stratum as the simulation boundary. Finally, this study takes the citizen center of Xiong’an new area as an example in order to verify the reliability and advancement of the 3D geological modeling scheme.


2021 ◽  
Vol 9 ◽  
Author(s):  
Senlin Yin ◽  
Baiyu Zhu ◽  
Youxin Wu ◽  
Feng Xu

As the controlling effect of complex lithofacies of lacustrine mixed fine-grained rocks on the shale oil sweet spot remains unclear, core, outcrop, general logging, nuclear magnetic resonance (NMR) logging, testing, and production data were used to study the types, combination pattern, and genesis of lithofacies architectures of lacustrine mixed fine-grained rocks in the study area by lithofacies hierarchy analysis, X-ray fluorescence (XRF) logging, UAV, and 3D geological modeling. The research shows that: 1) According to lithology and sedimentary structure, the mixed fine-grained rocks can be divided into 13 lithofacies types of different origins in 5 sub-categories and 2 categories. 2) UAV photography was combined with a traditional field survey to characterize the 3D spatial distribution of lithofacies architecture of the Lucaogou Formation on the outcrop, and it is found that the lithofacies architecture patterns of mixed fine-grained rocks include three types: gradual change type, abrupt change type, and special type. The gradual change type with higher sand development degree and symmetrical lithofacies architecture has a high quality reservoir with dissolution pores, and is mixed beach-bar sand in the mixed zone. It is high in development degree and often appears as several similar cycles stacking over each other. The abrupt change type can be subdivided into two sub-types, asymmetric and smaller in reservoir thickness. It is very high in development degree and often comes in several similar cycles. The special type belongs to thick clastic rock relatively independent in the mixed fine-grained rocks with a high development degree of sand. The sand is a higher quality reservoir with properties of tight reservoir. It often appears as stacking of single cycle sand. 3) The different lithofacies architectures in the mixed fine-grained rocks have significant differences in distribution. The gradual change type is mainly composed of mudstone, dolomitic siltstone, and sandy dolomite, dolomitic siltstone, and mudstone, and appears in lenticular shape overlapping with each other on the plane. The abrupt change type is made up of felsic siltstone, dolomitic siltstone, sandy dolomite, and mudstone, and appears as isolated thin layers on the plane. The special type is mainly composed of mudstone and felsic siltstone, and mudstone, and turns up as lenses of different sizes on the plane.


2021 ◽  
Vol 44 (3) ◽  
pp. 219-242
Author(s):  
Gongwen Wang ◽  
Shouting Zhang ◽  
Changhai Yan ◽  
Zhenshan Pang ◽  
Hongwei Wang ◽  
...  

The Fourth generation industrial age and 5G + intelligent communication in the "Fourth Paradigm of Science" in the 21st century provide a new opportunity for research on the relationship between mining development and environmental protection. This paper is based on the theory of metallogenic geodynamics background, metallogenic process and quantitative evaluation and chooses the Luanchuan district as a case study, using deep-level artificial intelligence mining and three/four-dimensional (3D/4D) multi-disciplinary, multi-parameter and multi-scale modeling technology platform of geoscience big data (including multi-dimensional and multi-scale geological, geophysical, geochemical, hyperspectral and highresolution remote sensing (multi-temporal) and real-time mining data), carrying out the construction of 3D geological model, metallogenic process model and quantitative exploration model from district to deposit scales and the quantitative prediction and evaluation of the regional Mo polymetallic mineral resources, the aim is to realize the dynamic evaluation of highprecision 3D geological (rock, structure, hydrology, soil, etc.) environment protection and comprehensive development and utilization of mineral resources in digital and wisdom mines, it provides scientific information for the sustainable development of mineral resources and mine environment in the study area. The research results are summarized as follows: (1) The geoscience big data related to mineral resource prediction and evaluation of district include mining data such as 3D geological modeling, geophysics interpretation, geochemistry, and remote sensing modeling, which are combined with GeoCube3.0 software. The optimization of deep targets and comprehensive evaluation of mineral resources in Luanchuan district (500 km2, 2.5 km deep) have been realized, including 6.5 million tons of Mo, 1.5 million tons of W, and 5 million tons of Pb-Zn-Ag. (2) The 3D geological modeling of geology, mineral deposit, and exploration targeting is related to the mine environment. The data of exploration and mining in the pits of Nannihu – Sandaozhuang – Shangfang deposits and the deep channels of Luotuoshan and Xigou deposits show a poor spatial correlation between the NW-trending porphyryskarn deposits and the ore bodies. The NE-trending faults are usually tensional or tensional-torsional structures formed in the post-metallogenic period, which is the migration pathway of hydrothermal fluid of the related Pb-Zn deposit. There is a risk of groundwater pollution in the high-altitude Pb-Zn mining zones, such as the Lengshui and Bailugou deposits controlled by NE-trending faults are developed outside of porphyry-skarn types of Mo (W) deposits in the Luanchuan area. (3) Construction of mineral resources and environmental assessment and decision-making in intelligent digital mines: 3D geological model is established in large mines and associated with ancient mining caves, pit, and deep roadway engineering in the mining areas to realize reasonable orientation and sustainable development of mining industry. The hyperspectral database is used to construct three-dimensional useful and harmful element models to realize the association of exploration, mining, and mineral processing mineralogy for the recovery of harmful elements (As, Sb, Hg, etc.). 0.5 m resolution Worldview2 images are used to identify the distribution of Fe in the wastewater and slag slurry of important tailings reservoirs, so as to protect surface runoff and soil pollution.


Author(s):  
Yabo Zhao ◽  
Weihua Hua ◽  
Guoxiong Chen ◽  
Dong Liang ◽  
Zhipeng Liu ◽  
...  

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2387-2406
Author(s):  
Mahtab Rashidifard ◽  
Jérémie Giraud ◽  
Mark Lindsay ◽  
Mark Jessell ◽  
Vitaliy Ogarko

Abstract. One of the main tasks in 3D geological modeling is the boundary parametrization of the subsurface from geological observations and geophysical inversions. Several approaches have been developed for geometric inversion and joint inversion of geophysical datasets. However, the robust, quantitative integration of models and datasets with different spatial coverage, resolution, and levels of sparsity remains challenging. One promising approach for recovering the boundary of the geological units is the utilization of a level set inversion method with potential field data. We focus on constraining 3D geometric gravity inversion with sparse lower-uncertainty information from a 2D seismic section. We use a level set approach to recover the geometry of geological bodies using two synthetic examples and data from the geologically complex Yamarna Terrane (Yilgarn Craton, Western Australia). In this study, a 2D seismic section has been used for constraining the location of rock unit boundaries being solved during the 3D gravity geometric inversion. The proposed work is the first we know of that automates the process of adding spatially distributed constraints to the 3D level set inversion. In many hard-rock geoscientific investigations, seismic data are sparse, and our results indicate that unit boundaries from gravity inversion can be much better constrained with seismic information even though they are sparsely distributed within the model. Thus, we conclude that it has the potential to bring the state of the art a step further towards building a 3D geological model incorporating several sources of information in similar regions of investigation.


2021 ◽  
Vol 861 (7) ◽  
pp. 072046
Author(s):  
Jingxiao Wang ◽  
Peinan Li ◽  
Xiaojun Li ◽  
Hehua Zhu

2021 ◽  
Author(s):  
zhaoyang Ma ◽  
lihai zhang ◽  
yan wang ◽  
guifan zhu ◽  
yinping liang

Abstract Remote sensing technology provides a new way to explore the earth for geoscience applications. In the context of continuous deepening of geological research and the vigorous development of geospatial information science, 3D geological modeling technology has become a research hotspot in the intersection of earth science and information science. The traditional 3D geological modeling technology refers to underground 3D modeling using geological data. This modeling method can only display the underground scene in 3D visualization, but cannot display the surface in detail. In this study, remote sensing technology is adopted to improve the traditional 3D geological modeling method, so that geological modeling can be integrated with remote sensing image, and a new 3D geological modeling method based on remote sensing technology is developed. This method can perform integrated 3D visualization of underground and aboveground scenes, which provides a new way for disaster prevention and reduction, geological prospecting and tectonic interpretation. The new 3D geological modeling method is mainly applied in the geological field, and has made new progress in multi-source heterogeneous geological data fusion, large-scale high-precision modeling, geological grid subdivision, attribute modeling technology, remote sensing image fusion and other aspects. Taking the Ya'an area as an example, this paper makes use of the new generation of 3D geological modeling technology to carry out 3D geological modeling and visual display. The 3D visualization in Ya'an area verifies the feasibility and effectiveness of the new 3D geological modeling method based on remote sensing technology in the current data environment.


2021 ◽  
Vol 13 (15) ◽  
pp. 3037
Author(s):  
Huy Hoa Huynh ◽  
Jaehung Yu ◽  
Lei Wang ◽  
Nam Hoon Kim ◽  
Bum Han Lee ◽  
...  

This paper demonstrates an integrative 3D model of short-wave infrared (SWIR) hyperspectral mapping and unmanned aerial vehicle (UAV)-based digital elevation model (DEM) for a carbonate rock outcrop including limestone and dolostone in a field condition. The spectral characteristics in the target outcrop showed the limestone well coincided with the reference spectra, while the dolostone did not show clear absorption features compared to the reference spectra, indicating a mixture of clay minerals. The spectral indices based on SWIR hyperspectral images were derived for limestone and dolostone using aluminum hydroxide (AlOH), hydroxide (OH), iron hydroxide (FeOH), magnesium hydroxide (MgOH) and carbonate ion (CO32−) absorption features based on random forest and logistic regression models with an accuracy over 87%. Given that the indices were derived from field data with consideration of commonly occurring geological units, the indices have better applicability for real world cases. The integrative 3D geological model developed by co-registration between hyperspectral map and UAV-based DEM using best matching SIFT descriptor pairs showed the 3D rock formations between limestone and dolostone. Moreover, additional geological information of the outcrop was extracted including thickness, slope, rock classification, strike, and dip.


Author(s):  
Xavier Bolós ◽  
Oriol Oms ◽  
Pablo Rodríguez-Salgado ◽  
Joan Martí ◽  
Bruno Gómez de Soler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document