scholarly journals Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand

Author(s):  
S. M. Talha Qadri ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby ◽  
Ahmed K. Abd El-Aal

AbstractThe study used the sedimentological and well log-based petrophysical analysis to evaluate the Farewell sandstone, the reservoir formation within the Kupe South Field. The sedimentological analysis was based on the data sets from Kupe South-1 to 5 wells, comprising the grain size, permeability, porosity, the total cement concentrations, and imprints of diagenetic processes on the reservoir formation. Moreover, well log analysis was carried on the four wells namely Kupe South 1, 2, 5 and 7 wells for evaluating the parameters e.g., shale volume, total and effective porosity, water wetness and hydrocarbon saturation, which influence the reservoir quality. The results from the sedimentological analysis demonstrated that the Farewell sandstone is compositionally varying from feldspathic arenite to lithic arenite. The analysis also showed the presence of significant total porosity and permeability fluctuating between 10.2 and 26.2% and 0.43–1376 mD, respectively. The diagenetic processes revealed the presence of authigenic clay and carbonate obstructing the pore spaces along with the occurrence of well-connected secondary and hybrid pores which eventually improved the reservoir quality of the Farewell sandstone. The well log analysis showed the presence of low shale volume between 10.9 and 29%, very good total and effective porosity values ranging from 19 to 32.3% as well as from 17 to 27%, respectively. The water saturation ranged from 22.3 to 44.9% and a significant hydrocarbon saturation fluctuating from 55.1 to 77.7% was also observed. The well log analysis also indicated the existence of nine hydrocarbon-bearing zones. The integrated findings from sedimentological and well log analyses verified the Farewell sandstone as a good reservoir formation.

2021 ◽  
Vol 11 (5) ◽  
pp. 2075-2089
Author(s):  
Mohamed Mahmoud Elhossainy ◽  
Ahmed Kamal Basal ◽  
Hussein Tawfik ElBadrawy ◽  
Sobhy Abdel Salam ◽  
Mohammad Abdelfattah Sarhan

AbstractThis paper presents different well log data interpretation techniques for evaluating the reservoir quality for the sandstone reservoir of the Alam El-Bueib-3A Member in Safir-03 well, Shushan Basin, Egypt. The evaluation of the available well log data for the Alam El-Bueib-3A Member in this well indicated high quality as oil-producing reservoir between depths 8108–8133 ft (25 ft thick). The calculated reservoir parameters possess shale volume less than or equal to 9% indicating the clean nature of this sandstone interval, water saturation values range from 10 to 23%, and effective porosity varies between 19 and 23%. Bulk volume of water is less than 0.04, non-producing water (SWirr) saturation varies between 10 and 12%, and permeability ranges from 393 to 1339 MD reflecting excellent reservoir quality. The calculated BVW values are less than the minimum (BVWmin = 0.05) reflecting clean (no water) oil production, which was confirmed through the drill stem test (DST). The relative permeabilities to both water and oil are located between 0.01–0 and 1.0–0.5, respectively. The water cut is fairly low where it ranges between 0 and 20%. Additionally, the water saturation values are less than the critical water saturation (Scw = 29.5%) which reflects that the whole net pay will flow hydrocarbon, whereas the water phase will remain immobile. This was confirmed with reservoir engineering through the DST.


2020 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Raja Asim Zeb ◽  
Muhammad Haziq Khan ◽  
Intikhab Alam ◽  
Ahtisham Khalid ◽  
Muhammad Faisal Younas

The lower Indus basin is leading hydrocarbon carriage sedimentary basin in Pakistan. Evaluation of two sorts out wells namely Sawan-2 and Sawan-3 has been assumed in this work for estimation and dispensation of petro physical framework using well log data. The systematic formation assessment by using petro physical studies and neutron density cross plots reveal that lithofacies mainly composed of sandstone. The hydrocarbon capability of the formation zone have been mark through several isometric maps such as water saturation, picket plots, cross plots, log analysis Phie vs depth and composite log analysis. The estimated petro physical properties shows that reservoir have volume of shale 6.1% and 14.0%, total porosity is observed between 14.6% and 18.2%, effective porosity ranges 12.5-16.5%, water saturation exhibits between 14.05% and 31.58%, hydrocarbon saturation ranges 68.42% -86.9%, The lithology of lower goru formation is dominated by very fine to fine and silty sandstone. The study method can be use within the vicinity of central Indus basin and similar basin elsewhere in the globe to quantify petro physical properties of oil and gas wells and comprehend the reservoir potential.


2019 ◽  
Vol 7 (2) ◽  
pp. 142
Author(s):  
Ubong Essien

Well log data from two wells were evaluated for shale volume, total and effective porosity. Well log data were obtained from gamma ray, neutron-density log, resistivity, sonic and caliper log respectively. This study aimed at evaluating the effect of shale volume, total and effective porosity form two well log data. The results of the analysis depict the presence of sand, sand-shale and shale formations. Hydrocarbon accumulation were found to be high in sand, fair in sand-shale and low in shale, since existence of shale reduces total and effective porosity and water saturation of the reservoir. The thickness of the reservoir ranged from 66 – 248.5ft. The average values of volume of shale, total and effective porosity values ranged from 0.004 – 0.299dec, 0.178 – 0.207dec and 0.154 – 0.194dec. Similarly, the water saturation and permeability ranged from 0.277 – 0.447dec and 36.637 - 7808.519md respectively. These values of total and effective porosity are high in sand, fair in sand-shale and low in shale formations. The results for this study demonstrate: accuracy, applicability of these approaches and enhance the proper evaluation of petrophysical parameters from well log data.    


2020 ◽  
Vol 21 (4) ◽  
pp. 41-48
Author(s):  
Layth Abdulmalik Jameel ◽  
Fadhil S. Kadhim ◽  
Hussein Al-Sudani

Petrophysical properties evaluation from well log analysis has always been crucial for the identification and assessment of hydrocarbon bearing zones. East Baghdad field is located 10 km east of Baghdad city, where the southern area includes the two southern portions of the field, Khasib formation is the main reservoir of East Baghdad oil field. In this paper, well log data of nine wells have been environmentally corrected, where the corrected data used to determine lithology, shale volume, porosity, and water saturation. Lithology identified by two methods; neutron-density and M-N matrix plots, while the shale volume estimated by single shale indicator and dual shale indicator, The porosity is calculated from the three common porosity logs; density log, neutron log, and sonic log, the water saturation is calculated by Indonesian model and Archie equation, and the results of the two methods were compared with the available core data to check the validity of the calculation. The results show that the main lithology in the reservoir is limestone, shale volume ranged between 0.152 to 0.249, porosity between 0.147 to 0.220, and water saturation from 0.627 to 0.966, the high-water saturation indicate that the water quantity is the determining factor of the reservoir units.


Author(s):  
Mfoniso U. Aka ◽  
Johnson Cletus Ibuot ◽  
Francisca N. Okeke

<p>In Niger Delta region of Nigeria, reservoirs are mostly loose and unstratified sands to hold fluids. In this paper, three different wells in central Niger Delta were assessed for shale volume and actual porosity. The results of the analysis delineate the presence of sand, sand-shale and shale formations. Hydrocarbon prospecting was found to be strong in sand, moderate in sandshale and shallow in shale respectively. However, existent of shale lessens effective porosity and water saturation of the rock formations. The extent of the formation extends from 1300 to 2500 m. Shale volume and actual porosity values extend from 0.00 to 0.302 dec and 0.047 to 0.302 dec which decrease with increasing depth. Comparably, the water saturation and water resistivity extend from 0.432 to 0.779 dec and 0.106 to 2.918 Ohm respectively. These values of actual porosity are strong in sand, moderate in sand-shale and shallow in shale formations. The results from this assessment proof well log a vital and easier tool in assessing of reservoir properties.</p>


PETRO ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 142
Author(s):  
Puri Wijayanti ◽  
Ratnayu Sitaresmi ◽  
Guntur Herlambang Wijanarko

Logging Interpretation aims to determine petrophysical parameters such as volume shale, porosity, formation water resistivity used to calculate water saturation values. In this study the wells analyzed were four exploration wells. Log analysis carried out in this well is in the form of qualitative analysis and quantitative analysis. The average shale volume in KML-1, KML-2, KML-3 and KML-4 wells is respectively 0.172, 0.132, 0.167 and 0.115. The average effective porosity of KML-1, KML-2, KML-3 and KML-4  wells is 0.236, 0.268, 0.219 and 0.225 respectively. The values of a, m and n follow the lithology of the well, namely limestone (carbonate) with a value of 1, 2 and 2. The value of Rw is obtained from the Pickett Plot Method that is equal to 1.52 Ωm on KML-1, 1.52 Ωm on KML-2, 1 , 52 Ωm on KML-3 and 0.5 Ωm on KML-4. The average water saturation with the Simandoux Method in KML-1, KML-2, KML-3 and KML-4 wells is 0.336, 0.434, 0.670 and 0.397. While the average water saturation value with the Indonesian Method in KML-1, KML-2, KML-3 and KML-4 wells is 0.439, 0.488, 0.723 and 0.440 respectively. From the comparison with S<sub>w</sub> Core, the Simandoux method is better used in calculating water saturation because the result is closer to the value of Sw Core.


2009 ◽  
Vol 12 (01) ◽  
pp. 53-67 ◽  
Author(s):  
Paul F. Worthington

Summary Validated electrical type curves, which collectively describe a continuum of conductivity behavior of fluid-saturated rocks, allow the petrophysical evaluation of hydrocarbon saturation to be set within a generic reference framework. As part of this process, the type curves permit pre-existing data from other reservoirs to be examined as potential analogs. Through the type curves, a reservoir rock can be classified in terms of its electrical character, specifically adherence to, or departures from, classical clean-sand (Archie) conditions and, by corollary, the degree of any shale (non-Archie) effects. The classification guides the approach to future core-data acquisition and to well-log analysis. In particular, in non-Archie reservoirs the type curves indicate whether the formation-water salinity is sufficiently high for the application of shaly-sand equations for the evaluation of hydrocarbon saturation or whether recourse should be made to a (customized) pseudo-Archie approach. Thus, the type curves are used to ensure that interpretative algorithms are appropriate to the petrophysical task at hand. The application of the type curves, using initializing log data from seven shaly hydrocarbon reservoirs containing relatively fresh formation waters, has illustrated how petrophysical interpretations away from the key intervals can be screened with minimal supporting information through a pseudo-Archie approach. Comparisons of best estimates of hydrocarbon-filled porosity with previously reported values have indicated a potential volumetric upside in all cases, with hydrocarbon saturations being up to 30 saturation units higher for these complex reservoirs. This outcome is attributed to the generic nature of the screening process, which takes account of the electrical character of a reservoir without any of the procedural constraints that are associated with conventional well-log analysis. To reduce further the risk of underestimating hydrocarbon volumes, a set of equivalence charts has been constructed using basic petrophysical properties. The equivalence charts allow a quick-look recognition of any departures from Archie conditions and thence whether the type curves are likely to be required. The screening process has been synthesized into pragmatic workflows, whose adoption should impart additional quality assurance to the petrophysical evaluation of hydrocarbon volumes.


PETRO ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 119
Author(s):  
Ratnayu Sitaresmi ◽  
Guntur Herlambang Wijanarko ◽  
Puri Wijayanti ◽  
Danaparamita Kusumawardhani

<p>Efforts are made to find the remaining hydrocarbons in the reservoir, requiring several methods to calculate the parameters of reservoir rock characteristics. For this reason, logging and core data are required. The purpose of this research is to estimate the Remaining Hydrocarbon Saturation that can be obtained from log data and core data. With several methods used, can determine petrophysical parameters such as rock resistivity, shale volume, effective porosity, formation water resistivity, mudfiltrate resistivity and rock resistivity in the flushed zone (Rxo) and rock resistivity in the Uninvaded Zone which will then be used to calculate the Water Saturation value Formation (Sw) and Mudfiltrat Saturation. (Sxo) In this study four exploratory wells were analyzed. Shale volume is calculated using data from Gamma Ray Log while effective Porosity is corrected for shale volume. Rw value obtained from the Pickett Plot Method is 0.5 μm. The average water saturation by Simandoux Method were 33.6%, 43.4%, 67.0% and 39.7% respectively in GW-1, GW-2, GW-3 and GW-4 wells. While the average water saturation value by the Indonesian Method were 43.9%, 48.8%, 72.3% and 44% respectively in GW-1, GW-2, GW-3 and GW-4 wells. From comparison with Sw Core, the Simandoux Method looks more appropriate. Average mudfiltrate (Sxo) saturation by Simandoux Method were 65.5%, 68.2%, 77.0% and 64.6% respectively in GW-1, GW-2, GW-3 and GW wells -4. Remaining Hydrocarbon Saturation (Shr) was obtained by 34.5%, 31.8, 23%, 35.4% of the results of parameters measured in the flushed zone namely Rxo, Rmf and Sxo data. For the price of Moving Hydrocarbons Saturation or production (Shm) is 31.9%, 24.8%, 10%, 24.9% in wells GW-1, GW-2, GW-3 and GW-4.</p>


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1835-1843 ◽  
Author(s):  
Luther White ◽  
John Castagna

A probabilistic inversion approach is used with Gassmann's equation to determine pore fluid modulus using elastic wave velocity without reference information from a rock saturated with a second fluid of known modulus. Numerical examples show that even when uncertainties in input parameters are relatively large, useful estimates of fluid modulus can be obtained. For a well‐log data example, water saturation derived from the inverted fluid modulus compares favorably to saturations derived from well log analysis.


Sign in / Sign up

Export Citation Format

Share Document