Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness

2019 ◽  
Vol 28 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Cuong Manh Vu ◽  
Quang-Vu Bach ◽  
Huong Thi Vu ◽  
Dinh Duc Nguyen ◽  
Bui Xuan Kien ◽  
...  
2013 ◽  
Vol 577-578 ◽  
pp. 73-76 ◽  
Author(s):  
Hideaki Katogi ◽  
Kenichi Takemura

In this study, effect of Carbon Milled Fiber (CMF) addition on interlaminar fracture toughness of carbon fiber reinforced plastics (CFRP) was investigated. Plain woven carbon fiber was used as reinforcement. Epoxy resin was used as matrix. The addition amounts of CMF are 0.5wt%, 0.8wt%, 1.0wt% and 1.2wt% for the epoxy resin. Mode I and mode II interlaminar fracture toughness tests were conducted based on JIS K 7086. As a result, mode I and mode II interlaminar fracture toughness increased with an increase of addictive amount of CMF. But excess addition was not effective. Pull out of CMF in matrix was found after mode I and mode II interlaminar fracture toughness tests. The mode I and mode II interlaminar fracture toughness of CMF added CFRP can be improved by fiber bridging of CMF.


2018 ◽  
Vol 20 (suppl 2) ◽  
pp. 873-882 ◽  
Author(s):  
Camila Belo Gomes Brito ◽  
Rita de Cássia Mendonça Sales Contini ◽  
Ricardo Francisco Gouvêa ◽  
Arthur Scaglioni de Oliveira ◽  
Mariano Andrés Arbelo ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hardik Bhanushali ◽  
Philip D. Bradford

This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB) and end notched flexure (ENF) experiments, respectively. Short beam strength (SBS) and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.


2017 ◽  
Vol 52 (7) ◽  
pp. 945-952 ◽  
Author(s):  
Xin Liu ◽  
Tao Sun ◽  
Zhanjun Wu ◽  
Huiyong He

The nanosheet boehmite (AlOOH) was synthesized and used as reinforcing agent to toughen carbon fiber-reinforced polymers. The purity, morphology, size and composition of the AlOOH nanosheets were investigated by the methods of XRD, SEM, TEM and FTIR, respectively. Interlaminar fracture toughness for mode II deformation was investigated for carbon fiber-reinforced polymers toughened by AlOOH nanosheets varying the contents at room temperature (RT, 293k) and at low temperature (LT, 77k). The fracture surfaces were examined by SEM to correlate with the interlaminar fracture properties. The results indicated that the synthesized AlOOH nanosheets were pure crystalline and of high purity. By TEM, the thickness of the lamellar AlOOH sample is about 22 nm. The end-notched flexure test results show that interlaminar fracture toughness of unidirectional carbon fiber-reinforced polymer with the same content AlOOH nanosheets (0, 1, 1.5, 2, 2.5, 3 wt.%) at LT is higher than that at RT. The interlaminar fracture toughness reaches the highest when the AlOOH nanosheets content equals 2% at RT. But at LT, the highest interlaminar fracture toughness appeared in the carbon fiber-reinforced polymers without AlOOH nanosheets.


Sign in / Sign up

Export Citation Format

Share Document