woven glass fiber
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
C. Suresh Kumar ◽  
K. Saravanakumar ◽  
P. Prathap ◽  
M. Prince ◽  
G. Bharathiraja ◽  
...  

The effect of reinforcement phases on indentation resistance and damage behavior of glass/epoxy laminates was investigated in this research work. Woven glass fiber mat and nonwoven chopped glass fiber mat were used as fiber reinforcement phases for fabricating the laminates. Low-velocity impact and quasi-static indentation tests were performed on both laminates to investigate the contact behavior and energy-absorbing capability. Moreover, the acoustic emission (AE) technique was employed to monitor the indentation damage resistance. AE parameters including normalized cumulative counts (NCC), normalized cumulative energy (NCE), rise angle (RA), and felicity ratio (FR) were analyzed. The bidirectional laminates showed premature load drops and drastic changes in the normalized cumulative counts/energy profile in the beginning of loading cycles, indicating the development of macrodamage such as debonding/delamination. AE sentry function results of bidirectional laminates show longer PII function at the earlier stages, associated with minor PIII function and greater PIV function, indicating the continuous degradation and progression of damage. In contrast, the chopped laminates exhibited superior postimpact performance than the bidirectional laminates. The presence of randomly oriented fibres prevents the delamination crack propagation during compression loading, which was attributed with the increased residual compressive strength.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2021 ◽  
Author(s):  
Liping Liu ◽  
Bo Lian ◽  
Changgeng Zhou ◽  
Kehao Duan ◽  
Xueming Zhu ◽  
...  

Abstract The delamination produced during drilling CFRP will affect its structural strength seriously. Delamination is closely related to the thrust force during drilling, which is closely related to the tool, so it is particularly important to choose the tools with appropriate geometric structure. Many scholars used tools with different geometric structure to drill CFRP, and then conducted the drilling damage analyses and drilling mechanism researches. It finally came to a conclusion that drill with special structure had certain advantage compared with common twist drill in the drilling process. In this paper, a new type of plane rake faced twist drill was used to drill the CFRP laminate with a thin woven glass fiber surface layer. Experimental results showed that plane rake faced twist drill along cutting edge had a constant reference rake angle value, which caused the plane rake faced twist drill generated smaller thrust force and less drilling damage than the common twist drill. As the reference rake angle of plane rake faced twist drill increased, the thrust force and drilling damage decreased. It was revealed the inhibition of the thin woven glass fiber surface layer on the drilling damage at entrance and exit. Finally, it was proposed that when plane rake faced twist drill was used to drill CFRP laminate with a thin woven glass fiber surface, 46° reference rake angle should be selected.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 834
Author(s):  
Alaa Al-Fatlawi ◽  
Károly Jármai ◽  
György Kovács

The application of fiber-reinforced plastic (FRP) composite materials instead of metals, due to the low density of FRP materials, results in weight savings in the base plates of aircraft pallets. Lower weight leads to lower fuel consumption of the aircraft and thereby less environmental damage. The study aimed to investigate replacing the currently used aluminum base plates of aircraft pallets with composite sandwich plates to reduce the weight of the pallets, thereby the weight of the unit loads transported by aircraft. The newly constructed sandwich base plate consists of an aluminum honeycomb core and FRP composite face-sheets. First, we made experimental tests and numerical calculations for the investigated FRP sandwich panel to validate the applicability of the calculation method. Next, the mechanical properties of 40 different layer-combinations of 4 different FRP face-sheet materials (phenolic woven glass fiber; epoxy woven glass fiber; epoxy woven carbon fiber; and hybrid layers) were investigated using the Digimat-HC modeling program in order to find the appropriate face-sheet construction. Face-sheets were built up in 1, 2, 4, 6 or 8 layers with sets of fiber orientations including cross-ply (0°, 90°) and/or angle-ply (±45°). The weight optimization method was elaborated considering 9 design constraints: stiffness, deflection, skin stress, core shear stress, facing stress, overall buckling, shear crimping, skin wrinkling, and intracell buckling. A case study for the base plate of an aircraft pallet was introduced to validate the optimization procedure carried out using the Matlab (Interior Point Algorithm) and Excel Solver (Generalized Reduced Gradient Nonlinear Algorithm) programs. In the case study, the weight of the optimal structure (epoxy woven carbon fiber face-sheets) was 27 kg, which provides weight savings of 66% compared to the standard aluminum pallet. The article’s main added value is the elaboration and implementation of an optimization method that results in significant weight savings and thus lower fuel consumption of aircraft.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sabah Salim Hamza ◽  
Al Emran Ismail ◽  
M. Y. Yuhazri ◽  
Ahmad Hamdan Ariffin ◽  
Mohamed Thariq Hameed Sultan

The use of metallic materials in automotive industry leads to increasing fuel consumption and cost, so trends are starting to use lighter and cheaper materials. In automotive applications, fibers are used in composites because they are stronger, stiffer, and lighter than bulk materials, and they can achieve higher energy absorbing compared to metallic materials. The purpose of this work is to study the potential utilization of natural fibers in the crash energy absorbing applications. The experimental procedures (the principle of a combination of manual layup and vacuum bladder technique) were applied to search the influence of utilizing jute fiber mat on crashworthiness parameters of composite materials with other kinds of fibers such as woven glass fiber reinforced epoxy composites. The study involved corrugated composite tubes with three layers of jute and hybrid glass-jute/epoxy material have been tested in uniaxial quasi-static crush conditions at the speed 10 mm/min. The results exhibit that the tube of jute fiber was somewhat lower than synthetic fibers, but the substitution of one layer of jute fiber with one layer of glass fiber resulted in an improvement in the crashworthiness parameters. As hybrid jute-glass was used, the best result was obtained, where energy absorption and specific energy absorption are improved by 17.75% and 25.122%, respectively.


2020 ◽  
pp. 152808372097134
Author(s):  
Sherif M Youssef ◽  
M Megahed ◽  
Soliman S Ali-Eldin ◽  
MA Agwa

Vacuum resin infusion (VRI) is a promising technique for manufacturing complicated structural laminates. This high viscosity of nanofilled resin increases the filling time and leads to an incomplete mold filling. The mold filling time can be reduced either by making the fiber dimensions smaller than the mold (gaps around the fibers) or by adding ethanol to nanofilled epoxy. However, ethanol addition influences the mechanical properties of composite laminates. In this study, different amounts of ethanol (0.5 wt. % and 1 wt. %) were used as a diluent to both neat epoxy and epoxy filled with (0.25 wt. %) of titanium dioxide (TiO2) nanoparticles. From results, it was found that ethanol addition saves the time for neat and nanofilled epoxy by 47.1% and 24.1%, respectively. It was found that adding 0.5 wt. % of ethanol to 0.25wt. % of TiO2 nanoparticles (GT0.25E0.5) enhances the tensile and flexural strength by 30.8% and 55.9%, respectively compared with neat specimens. Furthermore, the tensile and flexural moduli increased by 62% and 72.3%, respectively. Furthermore, the mold filling time was investigated experimentally and validated numerically using ANSYS FLUENT software. The mold filling time prediction using ANSYS FLUENT can be used to avoid resin gelation before the incomplete mold filling and thus can be considered a cost-effective methodology. The results showed that the gaps around the fibers reduce the time by 178% without affecting the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document