Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast

2022 ◽  
Author(s):  
Soojin Yeom ◽  
Junsoo Oh ◽  
Jung-Shin Lee
Keyword(s):  
2020 ◽  
Author(s):  
Matthew A Getz ◽  
David E Weinberg ◽  
Ines A Drinnenberg ◽  
Gerald R Fink ◽  
David P Bartel

Abstract RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5′-to-3′ exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand and degradation of sliced target RNA.


Author(s):  
Matthew A. Getz ◽  
David E. Weinberg ◽  
Ines A. Drinnenberg ◽  
Gerald R. Fink ◽  
David P. Bartel

AbstractRNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation, and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5′-to-3′ exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand, and degradation of sliced target RNA.


2004 ◽  
Vol 171 (4S) ◽  
pp. 256-257
Author(s):  
Kazunori Haga ◽  
Ataru Sazawa ◽  
Toru Harabayashi ◽  
Nobuo Shinohara ◽  
Minoru Nomoto ◽  
...  

2007 ◽  
Vol 49 (1) ◽  
pp. 54-64
Author(s):  
Aiko Nakashima ◽  
Masayuki Nashimoto ◽  
Masato Tamura
Keyword(s):  

10.2741/s379 ◽  
2013 ◽  
Vol S5 (2) ◽  
pp. 396-411 ◽  
Author(s):  
Nicolas Carlos Hoch

Sign in / Sign up

Export Citation Format

Share Document