Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

2018 ◽  
Vol 18 (4) ◽  
pp. 1210-1218
Author(s):  
Jinyu Lu ◽  
Shunji Yu ◽  
Xudong Qiao ◽  
Na Li
2014 ◽  
Vol 1079-1080 ◽  
pp. 22-27
Author(s):  
Shao Wu Zhang ◽  
Geng Biao Zhang ◽  
Ying Chuan Chen

In order to verify the feasibility of a new overallseismic reinforcement method of the framework. Firstly,carried low cyclic loading tests on reinforcedconcrete framework, then reinforced the framework with a new method, and repeatthe low cyclic loading tests , finally, compared and analyzed the data from twotests. Compared with the original framework, the shape of the hysteresis curveis more full and the skeleton curve of the parallel period is longer andthe ductility factor increased by 35% and the bearing capacity increased by 40%.The results show that reinforcement framework has better energy dissipationcapacity, ductility and transgender capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Hui Wang ◽  
Jian-jun Chang ◽  
Shi-qin He ◽  
Qing-lei Zhang

Low-cyclic loading tests were carried on brick walls bonded with mud reinforced by three methods: packing belts, one-side steel-meshed cement mortar, and double-side steel-meshed cement mortar. The failure modes, hysteresis curves of the load-displacement, skeleton curves, and ductility were obtained. The results showed that the bearing capacity of the brick walls bonded with mud reinforced by the abovementioned three methods had been increased to 1.4, 1.7, and 2.2 times as much as that of the unreinforced brick walls, respectively, and the ductility of the reinforced brick walls had been increased to 4.7, 2.1 and 2.2 times, respectively. The integrity and ductility of the reinforced brick walls were effectively improved in different degrees. The experimental results provided specific seismic strengthening techniques for the farmhouses built with brick walls bonded with mud.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qingguang He ◽  
Yanxia Bai ◽  
Weike Wu ◽  
Yongfeng Du

A novel assembled self-centering variable friction (SCVF) brace is proposed which is composed of an energy dissipation system, a self-centering system, and a set of force transmission devices. The hysteretic characteristics and energy dissipation of the SCVF brace with various parameters from low-cyclic loading tests are presented. A finite element model was constructed and tested under simulated examination for comparative analysis. The results indicate that the brace shows an atypical flag-type hysteresis curve. The SCVF brace showed its stable self-centering ability and dissipation energy capacity within the permitted axial deformation under different spring and friction plates. A larger deflection of the friction plate will make the variable friction of this SCVF brace more obvious. A higher friction coefficient will make the energy dissipation capacity of the SCVF brace stronger, but the actual friction coefficient will be lower than the design value after repeated cycles. The results of the fatigue tests showed that the energy dissipation system formed by the ceramic fiber friction blocks and the friction steel plates in the SCVF brace has a certain stability. The finite element simulation results are essentially consistent with the obtained test results, which is conducive to the use of finite element software for calculation and structural analysis in actual engineering design.


Author(s):  
Yan Cao ◽  
Mohammad Hasan Asadi ◽  
Rayed Alyousef ◽  
Shahrizan Baharom ◽  
Abdulaziz Alaskar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document