Capacity Difference of Circular Hollow Section X-joints Under Brace Axial Compression and Tension

2020 ◽  
Vol 20 (5) ◽  
pp. 1443-1453
Author(s):  
Bida Zhao ◽  
Chengqing Liu ◽  
Zeyang Yao ◽  
Yangzheng Cai
2019 ◽  
Vol 5 (1) ◽  
pp. 33 ◽  
Author(s):  
Abderlahman Ismaeel Hamdan

The aim of this paper is to investigate the effects of non-dimensional geometric parameters on stress concentration factors (SCFs) of circular hollow section CHS brace-to-H-shaped section T-connections under axial compression. This type of welded joints is used increasingly in steel construction. However, its fatigue design is not covered by codes, and its fatigue strength has not been given the deserved attention by researchers.  This research, however, bridges the gab on SCFs in this type of welded connections when being loaded in axial compression. here, parametric study based on the numerical analysis was performed to evaluate the effect of CHS brace diameter to H-shaped chord flange width ratio (β), H-shaped chord flange width to thickness ratio (2γ) and CHS brace thickness to H-shaped chord flange thickness ratio (τ) on SCFs in the brace and the chord of the connection. Based on practical considerations, the validity range of these parameters was 0.3 ≤ β ≤ 0.7, 16 ≤ 2γ ≤ 30 and 0.2 ≤ τ ≤ 0.1. Three-dimensional finite element (FE) study using commercial software ABAQUS was performed to study the hot spot stress distribution and hence SCFs in this type of welded joints. To begin with, the results of FEM were verified against available experimental data and good agreement was achieved. Afterwards, 48 joints were modeled in Abaqus to study the effect of geometrical parameter on SCFs in brace and chord. Based on the results of this extensive study, the effect of geometrical parameters was revealed. The paper, thus, shows that whilst β increases, SCFs in the brace and chord increases. Moreover, increasing the parameter 2γ results in an increase in SCFs in the two members. However, the change in τ has no significant effect on the SCFs in the brace or the chord. Values of SCFs are found to be between 2 and 7.


2021 ◽  
Vol 64 (4) ◽  
pp. 251-260
Author(s):  
Sangeetha Palanivelu ◽  
Dhinagaran Moorthy ◽  
Gobinaath Subramani ◽  
Jeevan Dhayanithi

The experimental and analytical evaluation of externally reinforced square and circular cold-formed steel tubular columns with GFRP strips is presented in this study. Under axial compression, fourteen tubular columns with pinned support, seven square tubular sections, and seven circular hollow section columns with externally bonded GFRP strips at various points were tested to failure. The GFRP strips improved the load-carrying capacity of the columns according to the trial results. The GFRP strip at the ends and intermediate regions, with a clear spacing of 100 to 150 mm between the strips, has been proven to be the most effective in achieving ultimate strength, especially for column specimens with full wrapping. Wrapping the GFRP strips increases the strength of square and circular columns by 24 % and 5%, respectively, when compared to unwrapped specimens. The percentage gain in strength is 16% when the cross-section is changed from circular to square. Local and overall flexural buckling, respectively, are the failure modes seen in the square and circular sections. The experimental strength and axial deformation were compared to the analytical results, which showed a satisfactory correlation.


2016 ◽  
Vol 118 ◽  
pp. 216-225 ◽  
Author(s):  
M.H. Kabir ◽  
S. Fawzia ◽  
T.H.T. Chan ◽  
M. Badawi

Sign in / Sign up

Export Citation Format

Share Document