Finite element Analysis on Buckling Strength of Stainless Steel Circular Hollow Section Columns Under Concentric Axial Compression

2020 ◽  
Vol 20 (6) ◽  
pp. 1831-1848 ◽  
Author(s):  
Sung Soo Kim ◽  
Jeong Yeon Kim ◽  
Tae Soo Kim
2000 ◽  
Vol 13 (02) ◽  
pp. 65-72 ◽  
Author(s):  
R. Shahar

SummaryThe use of acrylic connecting bars in external fixators has become widespread in veterinary orthopaedics. One of the main advantages of an acrylic connecting bar is the ability to contour it into a curved shape. This allows the surgeon to place the transcortical pins according to safety and convenience considerations, without being bound by the requirement of the standard stainless steel connecting bar, that all transcortical pins be in the same plane.The purpose of this study was to evaluate the stiffness of unilateral and bilateral medium-sized external fixator frames with different curvatures of acrylic connecting bars. Finite element analysis was used to model the various frames and obtain their stiffness under four types of load: Axial compression, four-point medio-lateral bending, fourpoint antero-posterior bending and torsion. The analysis also provided the maximal pin stresses occurring in each frame for each loading condition.Based on the results of this study, curvatures of acrylic connecting bars of up to a maximal angular difference between pins of 25° will result in very similar stiffness and maximal pin stresses to those of the equivalent, uniplanar stainless steel system. In both unilateral and bilateral systems the stiffness decreases slightly as angulation increases for axial compression and medio-lateral bending, increases slightly for torsion and increases substantially for antero-posterior bending.External fixator systems with curved acrylic connecting bars are commonly used in veterinary orthopaedics. This paper evaluates the biomechanical performance of such systems by applying the finite element analysis method. It shows that external fixators with curved acrylic connecting bars exhibit stiffness and maximal pin stresses which are similar to those of the standard stainless steel system.


2020 ◽  
Vol 151 ◽  
pp. 106728 ◽  
Author(s):  
Ran Feng ◽  
Zhipeng Huang ◽  
Zhenming Chen ◽  
Krishanu Roy ◽  
Boshan Chen ◽  
...  

2011 ◽  
Vol 368-373 ◽  
pp. 473-477
Author(s):  
Xing Ping Shu ◽  
Zhi Shen Yuan ◽  
Zheng Rong Zhu ◽  
Yao Yao

This paper presents the experimental and numerical results of the ultimate bearing capacity of partially overlapped tubular N-joints, which have circular hollow section (CHS) brace members welded to a square hollow section (SHS) chord member. Two partially overlapped N-joints were tested to failure under overlapping brace axial loading and chord axial loading. The failure mode of specimen N1 was the overlapping brace local bucking, and the failure mode of specimen N2 was the chord face plastification with chord side wall buckling. Meanwhile, weld fracture occurred on both specimens. Then, making use of finite element package program ANSYS, in which twenty nodes solid element was employed and the weld was simulated, elastic-plastic large deflection finite element analysis of the experimental joints was conducted. The experimental data were compared with the results acquired by finite element analysis and it was proved that ANSYS is feasible to simulate the connecting weld and analyze the static behavior of partially overlapped CHS-to-SHS welded N-joints.


Author(s):  
James K. Wilkins

A project has been conducted to verify a finite element analysis procedure for studying the nonlinear behavior of 90°, stainless steel, 4 inch schedule 10, butt welding elbows. Two displacement controlled monotonic in-plane tests were conducted, one closing and one opening, and the loads, displacements, and strains at several locations were recorded. Stacked 90° tee rosette gages were used in both tests because of their ability to measure strain over a small area. ANSYS shell element 181 was used in the FEA reconciliations. The FEA models incorporated detailed geometric measurements of the specimens, including the welds, and material stress-strain data obtained from the attached straight piping. Initially, a mesh consisting of sixteen elements arrayed in 8 rings was used to analyze the elbow. The load-displacement correlation was quite good using this mesh, but the strain reconciliation was not. Analysis of the FEA results indicated that the axial and hoop strain gradients across the mid-section of the elbow were very high. In order to generate better strain correlations, the elbow mesh was refined in the mid-section of the elbow to include 48 elements per ring and an additional six rings, effectively increasing the element density by nine times. Using the refined mesh produced much better correlations with the strain data.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


Sign in / Sign up

Export Citation Format

Share Document