scholarly journals Modeling of all-optical even and odd parity generator circuits using metal-insulator-metal plasmonic waveguides

2017 ◽  
Vol 7 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Lokendra Singh ◽  
Amna Bedi ◽  
Santosh Kumar
2014 ◽  
Vol 28 (04) ◽  
pp. 1450025 ◽  
Author(s):  
XIANKUN YAO

In this paper, we have numerically investigated a novel kind of ultra-compact wavelength demultiplexing (WDM) in high-confined metal–insulator–metal (MIM) plasmonic waveguides. It is found that the drop transmission efficiency of the filtering cavity can be strongly enhanced by introducing a side-coupled cavity in the MIM waveguide. The theoretical analysis is verified by the finite-difference time-domain simulations. Through cascading the filtering units, a highly effective triple-wavelength demultiplexer is proposed by selecting the specific separation between the two coupled cavities of filtering units. Our results may find potential applications for the nanoscale WDM systems in highly integrated optical circuits and networks.


2014 ◽  
Vol 2 (3) ◽  
pp. 35 ◽  
Author(s):  
M. Talafi Noghani ◽  
M. H. Vadjed Samiei

Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI) and metal-insulator-metal (HMIM) plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp) and spatial length (Ls) are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls), nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.


Sign in / Sign up

Export Citation Format

Share Document