metal insulator metal
Recently Published Documents


TOTAL DOCUMENTS

1772
(FIVE YEARS 386)

H-INDEX

57
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Hyojung Kim ◽  
Jongwoo Park ◽  
Taeyoung Khim ◽  
Hyuncheol Hwang ◽  
Jungmin Park ◽  
...  

Abstract Flexible devices fabricated with polyimide (PI) substrate are crucial for foldable, rollable, or stretchable products in various applications. However, inherent technical challenges remain in mobile charge induced device instabilities and image retention, significantly hindering future technologies. We introduced a new barrier material, SiCOH, into the backplane of amorphous indium-gallium-zinc-oxide (a–IGZO) thin-film transistors (TFTs) that were then implemented into production-level flexible panels. We found that the SiCOH layer effectively compensates the surface charging induced by fluorine ions at the interface between the PI substrate and the barrier layer under bias stress, thereby preventing abnormal positive Vth shifts and image disturbance. The a–IGZO TFTs, metal-insulator-metal (MIM), and metal-insulator-semiconductor (MIS) capacitors with the SiCOH layer demonstrate reliable device performance, Vth shifts, and capacitance changes with an increase in the gate bias stress. A flexible device with SiCOH enables the suppression of abnormal Vth shifts associated with PI and plays a vital role in the degree of image sticking phenomenon. This work provides new inspirations to creating much improved process integrity and paves the way for expediting versatile form-factors.


2022 ◽  
Author(s):  
Haowen Chen ◽  
Yunping Qi ◽  
Jinghui Ding ◽  
Yujiao Yuan ◽  
Zhenting Tian ◽  
...  

Abstract A plasmonic resonator system consisting of a metal-insulator-metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated using the finite difference in time domain (FDTD) method, and the simulation results contain two resonant dips. And the physical mechanism is studied by the multimode interference coupled mode theory (MICMT), the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust two dips respectively. The refractive index sensor with a sensitivity of 1578nm/RIU and figure of merit (FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.


2022 ◽  
Author(s):  
Vahid Najjari ◽  
Saeed Mirzanejhad ◽  
Amin Ghadi

Abstract A plasmonic refractive index sensor including a Metal-Insulator-Metal waveguide (MIM) with four teeth is proposed. Transmittance (T), Sensitivity (S) and Figure of Merit (FOM) investigated numerically and analysed via Finite Difference Time Domain method (FDTD). The simulation results show the generation of double Fano resonances in the system that the resonance wavelength and the resonance line-shapes can be adjusted by changing the geometry of the device. By optimizing the structure in the initial configuration, the maximum sensitivity of 1078nm/RIU and FOM of 3.62×105 is achieved. Then change the structure parameters. In this case, the maximum sensitivity and FOM are 1041nm/RIU and 2.94×104 respectively, thus two detection points can be used for the refractive index sensor. Due to proper performance and adjustable Fano resonance points, this structure is significant for fabricating sensitive refractive index sensor and plasmonic bandpass filter.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Mani Teja Vijjapu ◽  
Mohammed E. Fouda ◽  
Agamyrat Agambayev ◽  
Chun Hong Kang ◽  
Chun-Ho Lin ◽  
...  

AbstractNeuromorphic vision sensors have been extremely beneficial in developing energy-efficient intelligent systems for robotics and privacy-preserving security applications. There is a dire need for devices to mimic the retina’s photoreceptors that encode the light illumination into a sequence of spikes to develop such sensors. Herein, we develop a hybrid perovskite-based flexible photoreceptor whose capacitance changes proportionally to the light intensity mimicking the retina’s rod cells, paving the way for developing an efficient artificial retina network. The proposed device constitutes a hybrid nanocomposite of perovskites (methyl-ammonium lead bromide) and the ferroelectric terpolymer (polyvinylidene fluoride trifluoroethylene-chlorofluoroethylene). A metal-insulator-metal type capacitor with the prepared composite exhibits the unique and photosensitive capacitive behavior at various light intensities in the visible light spectrum. The proposed photoreceptor mimics the spectral sensitivity curve of human photopic vision. The hybrid nanocomposite is stable in ambient air for 129 weeks, with no observable degradation of the composite due to the encapsulation of hybrid perovskites in the hydrophobic polymer. The functionality of the proposed photoreceptor to recognize handwritten digits (MNIST) dataset using an unsupervised trained spiking neural network with 72.05% recognition accuracy is demonstrated. This demonstration proves the potential of the proposed sensor for neuromorphic vision applications.


Author(s):  
Minju Kim ◽  
Youngji Kim ◽  
Kiheung Kim ◽  
Wen-Tse Huang ◽  
Ru-Shi Liu ◽  
...  

29-Fold luminescence enhancement of upconversion nanoparticle-sensitized perovskite quantum dots was achieved by implementing a metal–insulator–metal configuration and plasmonic coupling.


Author(s):  
Yunjie Shi ◽  
Wei Liu ◽  
Shidi Liu ◽  
Tianyu Yang ◽  
Yuming Dong ◽  
...  

We report the strong coupling between plasmonic surface lattice resonances (SLRs) and photonic Fabry-Pérot (F-P) resonances in a microcavity embedded with two-dimensional periodic array of metal-insulator-metal nanopillars. For such a plasmonic-photonic system, we show that the SLR can be strongly coupled to the F-P resonances of both the odd- and even orders, and that the splitting energy reaches as high as 138 meV in the visible regime. We expect that this work will provide a new scheme for strong coupling between plasmonic and photonic modes.


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Kun Deng ◽  
Fuxing Yang ◽  
Yucheng Wang ◽  
Chengqi Lai ◽  
Ke Han

In this paper a high capacitance ratio and low actuation voltage RF MEMS switch is designed and fabricated for Ka band RF front-ends application. The metal-insulator-metal (MIM) capacitors is employed on a signal line to improve the capacitance ratio, which will not degrade the switch reliability. To reduce the actuation voltage, a low spring constant bending folding beam and bilateral drop-down electrodes are designed in the MEMS switch. The paper analyzes the switch pull-in model and deduces the elastic coefficient calculation equation, which is consistent with the simulation results. The measured results indicated that, for the proposed MEMS switch with a gap of 2 μm, the insertion loss is better than −0.5 dB and the isolation is more than −20 dB from 25 to 35 GHz with an actuation voltage of 15.8 V. From the fitted results, the up-state capacitance is 6.5 fF, down-state capacitance is 4.3 pF, and capacitance ratios is 162. Compared with traditional MEMS capacitive switches with dielectric material Si3N4, the proposed MEMS switch exhibits high on/off capacitance ratios of 162 and low actuation voltage.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Ke-Jing Lee ◽  
Yeong-Her Wang

Zr can be stabilized by the element selected, such as Mg-stabilized Zr (MSZ), thus providing MSZ thin films with potentially wide applications and outstanding properties. This work employed the element from alkaline earth metal stabilized Zr to investigate the electrical properties of sol–gel AZrOx (A = alkaline earth metal; Mg, Sr, Ba) as dielectric layer in metal-insulator–metal resistive random-access memory devices. In addition, the Hume–Rothery rule was used to calculate the different atomic radii of elements. The results show that the hydrolyzed particles, surface roughness, and density of oxygen vacancy decreased with decreased difference in atomic radius between Zr and alkaline earth metal. The MgZrOx (MZO) thin film has fewer particles, smoother surface, and less density of oxygen vacancy than the SrZrOx (SZO) and BaZrOx (BZO) thin films, leading to the lower high resistance state (HRS) current and higher ON/OFF ratio. Thus, a suitable element selection for the sol–gel AZrOx memory devices is helpful for reducing the HRS current and improving the ON/OFF ratio. These results were obtained possibly because Mg has a similar atomic radius as Zr and the MgOx-stabilized ZrOx.


2021 ◽  
Vol 23 (6) ◽  
pp. 285-294
Author(s):  
N.V. Andreeva ◽  
◽  
V.V. Luchinin ◽  
E.A. Ryndin ◽  
M.G. Anchkov ◽  
...  

Memristive neuromorphic chips exploit a prospective class of novel functional materials (memristors) to deploy a new architecture of spiking neural networks for developing basic blocks of brain-like systems. Memristor-based neuromorphic hardware solutions for multi-agent systems are considered as challenges in frontier areas of chip design for fast and energy-efficient computing. As functional materials, metal oxide thin films with resistive switching and memory effects (memristive structures) are recognized as a potential elemental base for new components of neuromorphic engineering, enabling a combination of both data storage and processing in a single unit. A key design issue in this case is a hardware defined functionality of neural networks. The gradient change of resistive properties of memristive elements and its non-volatile memory behavior ensure the possibility of spiking neural network organization with unsupervised learning through hardware implementation of basic synaptic mechanisms, such as Hebb's learning rules including spike — timing dependent plasticity, long-term potentiation and depression. This paper provides an overview of scientific researches carrying out at Saint Petersburg Electrotechnical University "LETI" since 2014 in the field of novel electronic components for neuromorphic hardware solutions of brain-like chip design. Among the most promising concepts developed by ETU "LETI" are: the design of metal-insulator-metal structures exhibiting multilevel resistive switching (gradient tuning of resistive properties and bipolar resistive switching are combined together in a sin¬gle memristive element) for further use as artificial synaptic devices in neuromorphic chips; computing schemes for spatio-temporal pattern recognition based on spiking neural network architecture implementation; breadboard models of analogue circuits of hardware implementation of neuromorphic blocks for brain-like system developing.


Sign in / Sign up

Export Citation Format

Share Document