A study of shallow cumulus cloud droplet dispersion by large eddy simulations

2011 ◽  
Vol 25 (2) ◽  
pp. 166-175 ◽  
Author(s):  
Xiaofeng Wang ◽  
Huiwen Xue ◽  
Wen Fang ◽  
Guoguang Zheng
2019 ◽  
Vol 19 (9) ◽  
pp. 6295-6313 ◽  
Author(s):  
Carolin Klinger ◽  
Graham Feingold ◽  
Takanobu Yamaguchi

Abstract. The effect of 1-D and 3-D thermal radiation on cloud droplet growth in shallow cumulus clouds is investigated using large eddy simulations with size-resolved cloud microphysics. A two-step approach is used for separating microphysical effects from dynamical feedbacks. In step one, an offline parcel model is used to describe the onset of rain. The growth of cloud droplets to raindrops is simulated with bin-resolved microphysics along previously recorded Lagrangian trajectories. It is shown that thermal heating and cooling rates can enhance droplet growth and raindrop production. Droplets grow to larger size bins in the 10–30 µm radius range. The main effect in terms of raindrop production arises from recirculating parcels, where a small number of droplets are exposed to strong thermal cooling at cloud edge. These recirculating parcels, comprising about 6 %–7 % of all parcels investigated, make up 45 % of the rain for the no-radiation simulation and up to 60 % when 3-D radiative effects are considered. The effect of 3-D thermal radiation on rain production is stronger than that of 1-D thermal radiation. Three-dimensional thermal radiation can enhance the rain amount up to 40 % compared to standard droplet growth without radiative effects in this idealized framework. In the second stage, fully coupled large eddy simulations show that dynamical effects are stronger than microphysical effects, as far as the production of rain is concerned. Three-dimensional thermal radiative effects again exceed one-dimensional thermal radiative effects. Small amounts of rain are produced in more clouds (over a larger area of the domain) when thermal radiation is applied to microphysics. The dynamical feedback is shown to be an enhanced cloud circulation with stronger subsiding shells at the cloud edges due to thermal cooling and stronger updraft velocities in the cloud center. It is shown that an evaporation–circulation feedback reduces the amount of rain produced in simulations where 3-D thermal radiation is applied to microphysics and dynamics, in comparison to where 3-D thermal radiation is only applied to dynamics.


Author(s):  
David M. Romps ◽  
Rusen Öktem ◽  
Satoshi Endo ◽  
Andrew M. Vogelmann

AbstractA cloud’s lifecycle determines how its mass flux translates into cloud cover, thereby setting Earth’s albedo. Here, an attempt is made to quantify the most basic aspects of the lifecycle of a shallow cumulus cloud: the degree to which it is a bubble or plume, and active or forced. Quantitative measures are proposed for these properties, which are then applied to hundreds of shallow cumulus clouds in Oklahoma using data from stereo cameras, a Doppler lidar, and large-eddy simulations. The observed clouds are intermediate between active and forced, but behave more like bubbles than plumes. The simulated clouds, on the other hand, are more active and plume-like, suggesting room for improvement in the modeling of shallow cumulus.


2019 ◽  
Vol 46 (20) ◽  
pp. 11539-11547 ◽  
Author(s):  
Satoshi Endo ◽  
Damao Zhang ◽  
Andrew M. Vogelmann ◽  
Pavlos Kollias ◽  
Katia Lamer ◽  
...  

2018 ◽  
Author(s):  
Carolin Klinger ◽  
Graham Feingold ◽  
Takanobu Yamaguchi

Abstract. The effect of 1D and 3D thermal radiation on cloud droplet growth in shallow cumulus clouds is investigated using large eddy simulations with size resolved cloud microphysics. A two step approach is used for separating microphysical effects from dynamical feedbacks. In step one, an offline parcel model with bin resolved microphysics is used where cloud droplets are grown along previously recorded Lagrangian trajectories. It is shown that thermal heating and cooling rates can enhance droplet growth and rain production. Droplets grow to larger size bins in the 10–30 μm radius range. The main effect in terms of rain production arises from recirculating parcels, where a small number of droplets is exposed to strong thermal cooling at cloud edge. These recirculating parcels, comprising about 6–7 % of all parcels investigated, make up 45 % of the accumulated rain rate for the no radiation simulation and up to 60 % when 3D radiative effects are considered. The effect of 3D thermal radiation on rain production is stronger than that of 1D thermal radiation. 3D thermal radiation can enhance the rain rate up to 40 % compared to standard droplet growth without radiative effects in this idealized framework. In the second stage, fully coupled large eddy simulations show that dynamical effects are stronger than microphysical effects, as far as the production of rain is concerned. 3D thermal radiative effects again exceed 1D thermal radiative effects. Small amounts of rain are produced in more clouds (over a larger area of the domain) when thermal radiation is applied to microphysics. The dynamical feedback is shown to be an enhanced cloud circulation with stronger subsiding shells at the cloud edges due to thermal cooling, and stronger updraft velocities in the cloud center. It is shown that an evaporation-circulation feedback reduces the amount of rain produced in simulations where 3D thermal radiation is applied to microphysics and dynamics, in comparison where 3D thermal radiation is only applied to dynamics.


2012 ◽  
Vol 69 (11) ◽  
pp. 3264-3276 ◽  
Author(s):  
D. Chung ◽  
G. Matheou ◽  
J. Teixeira

Abstract This study presents a series of steady-state large-eddy simulations (LESs) to study the stratocumulus to shallow cumulus cloud transition. To represent the different stages of what can be interpreted as an Eulerian view of the transition, each simulation is assigned a unique sea surface temperature (SST) and run until statistically steady. The LES runs are identical in every other aspect. These idealized boundary-driven steady-state LESs allow for a simple parametric assessment of cloud-controlling factors in isolation from initial conditions and time-lag effects inherent in the Lagrangian view of the transition. The analysis of the thermodynamic energy budget reveals that, as the cloud regime transitions from stratocumulus to shallow cumulus, changes in the cloud radiative cooling term are balanced by changes in the subsidence warming term. This leads to a linear regression between the cloud fraction (CF) and an integral that scales, to a first-order approximation, as the lower-tropospheric stability (LTS). The study also considers the response of the boundary layer to a step change in SST that triggers the transition from stratocumulus to shallow cumulus. An examination of the time-lag conditional average centered on events when cumulus thermals are penetrating the stratocumulus deck suggests that the net effect of cumulus thermals in the transition is not to dry the stratocumulus deck but rather to moisten it. It is shown that the Gaussian probability density function (pdf) model of Sommeria and Deardorff describes the evolution of CF well during this step-change transition, suggesting that the systematic decrease in cloud cover is essentially associated with the mean drying of the air just below the cloud top.


2003 ◽  
Vol 60 (8) ◽  
pp. 1060-1074 ◽  
Author(s):  
R. A. J. Neggers ◽  
H. J. J. Jonker ◽  
A. P. Siebesma

2013 ◽  
Vol 6 (2) ◽  
pp. 2287-2323 ◽  
Author(s):  
T. Heus ◽  
A. Seifert

Abstract. This paper presents a method for feature tracking of fields of shallow cumulus convection in Large Eddy Simulations (LES) by connecting the projected cloud cover in space and time, and by accounting for splitting and merging of cloud objects. Existing methods tend to be either imprecise or, when using the full 3 dimensional spatial field, prohibitively expensive for large data sets. Compared to those 3-D methods, the current method reduces the memory footprint by up to a factor 100, while retaining most of the precision by correcting for splitting and merging events between different clouds. The precision of the algorithm is further enhanced by taking the vertical extent of the cloud into account. Furthermore, rain and subcloud thermals are also tracked, and links between clouds, their rain, and their subcloud thermals are made. The method compares well with results from the literature. Resolution and domain dependencies are also discussed. For the current simulations, the cloud size distribution converges for clouds larger than an effective resolution of 6Δx, and smaller than about 20% of the horizontal domains size.


2012 ◽  
Vol 69 (6) ◽  
pp. 1936-1956 ◽  
Author(s):  
Ji Nie ◽  
Zhiming Kuang

Abstract Responses of shallow cumuli to large-scale temperature/moisture perturbations are examined through diagnostics of large-eddy simulations (LESs) of the undisturbed Barbados Oceanographic and Meteorological Experiment (BOMEX) case and a stochastic parcel model. The perturbations are added instantaneously and allowed to evolve freely afterward. The parcel model reproduces most of the changes in the LES-simulated cloudy updraft statistics in response to the perturbations. Analyses of parcel histories show that a positive temperature perturbation forms a buoyancy barrier, which preferentially eliminates parcels that start with lower equivalent potential temperature or have experienced heavy entrainment. Besides the amount of entrainment, the height at which parcels entrain is also important in determining their fate. Parcels entraining at higher altitudes are more likely to overcome the buoyancy barrier than those entraining at lower altitudes. Stochastic entrainment is key for the parcel model to reproduce the LES results. Responses to environmental moisture perturbations are quite small compared to those to temperature perturbations because changing environmental moisture is ineffective in modifying buoyancy in the BOMEX shallow cumulus case. The second part of the paper further explores the feasibility of a stochastic parcel–based cumulus parameterization. Air parcels are released from the surface layer and temperature/moisture fluxes effected by the parcels are used to calculate heating/moistening tendencies due to both cumulus convection and boundary layer turbulence. Initial results show that this conceptually simple parameterization produces realistic convective tendencies and also reproduces the LES-simulated mean and variance of cloudy updraft properties, as well as the response of convection to temperature/moisture perturbations.


2020 ◽  
Author(s):  
George Spill ◽  
Philip Stier ◽  
Paul Field ◽  
Guy Dagan

<p>Shallow cumulus clouds interact with their environment in myriad significant ways, and yet their behavour is still poorly understood, and is responsible for much uncertainty in climate models. Improving our understanding of these clouds is therefore an important part of improving our understanding of the climate system as a whole.</p><p>Modelling studies of shallow convection have traditionally made use of highly idealised simulations using large-eddy models, which allow for high resolution, detailed simulations. However, this idealised nature, with periodic boundaries and constant forcing, and the quasi-equilibrium cloud fields produced, means that they do not capture the effect of transient forcing and conditions found in the real atmosphere, which contains shallow cumulus cloud fields unlikely to be in equilibrium.<span> </span></p><p>Simulations with more realistic nested domains and forcings have previously been shown to have significant persistent responses differently to aerosol perturbations, in contrast to many large eddy simulations in which perturbed runs tend to reach a similar quasi-equilibrium.<span> </span></p><p>Here, we further this investigation by using a single model to present a comparison of familiar idealised simulations of trade wind cumuli in periodic domains, and simulations with a nested domain, whose boundary conditions are provided by a global driving model, able to simulate transient synoptic conditions.<span> </span></p><p>The simulations are carried out using the Met Office Unified Model (UM), and are based on a case study from the Rain In Cumulus over the Ocean (RICO) field campaign. Large domains of 500km are chosen in order to capture large scale cloud field behaviour. A double-moment interactive microphysics scheme is used, along with prescribed aerosol profiles based on RICO observations, which are then perturbed.</p><p>We find that the choice between realistic nested domains with transient forcing and idealised periodic domains with constant forcing does indeed affect the nature of the response to aerosol perturbations, with the realistic simulations displaying much larger persistent changes in domain mean fields such as liquid water path and precipitation rate.<span> </span></p>


Sign in / Sign up

Export Citation Format

Share Document