Analysis of Data from Wearable Sensors for Sleep Quality Estimation and Prediction Using Deep Learning

2020 ◽  
Vol 45 (12) ◽  
pp. 10793-10812
Author(s):  
Anshika Arora ◽  
Pinaki Chakraborty ◽  
M. P. S. Bhatia
2020 ◽  
Vol 6 (3) ◽  
pp. 388-391
Author(s):  
Roman Siedel ◽  
Tobias Scheck ◽  
Ana C. Perez Grassi ◽  
Julian B. Seuffert ◽  
André Apitzsch ◽  
...  

AbstractIn recent years, the demographic change in conjunction with a lack of professional caregivers led to retirement homes reaching capacity. The Alzheimer Disease International stated that over 50 million people suffered from dementia in 2019 worldwide and twice the amount will presumably be effected in 2030. The field of Ambient Assisted Living (AAL) tackles this problem by facilitating technical system-aided everyday life. AUXILIA is such an AAL system and does not only support elderly people with dementia in an early phase, but also monitors their activities to provide behaviour analysis results for care attendants, relatives and physicians. Moreover, the system is capable of recognizing emergency situations like human falls. Furthermore, sleep quality estimation is employed to be able to draw conclusions about the current behaviour of an affected person. This article presents the current development state of AUXILIA.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A255-A255
Author(s):  
Dmytro Guzenko ◽  
Gary Garcia ◽  
Farzad Siyahjani ◽  
Kevin Monette ◽  
Susan DeFranco ◽  
...  

Abstract Introduction Pathophysiologic responses to viral respiratory challenges such as SARS-CoV-2 may affect sleep duration, quality and concomitant cardiorespiratory function. Unobtrusive and ecologically valid methods to monitor longitudinal sleep metrics may therefore have practical value for surveillance and monitoring of infectious illnesses. We leveraged sleep metrics from Sleep Number 360 smart bed users to build a COVID-19 predictive model. Methods An IRB approved survey was presented to opting-in users from August to November 2020. COVID-19 test results were reported by 2003/6878 respondents (116 positive; 1887 negative). From the positive group, data from 82 responders (44.7±11.3 yrs.) who reported the date of symptom onset were used. From the negative group, data from 1519 responders (48.4±12.9 yrs.) who reported testing dates were used. Sleep duration, sleep quality, restful sleep duration, time to fall asleep, respiration rate, heart rate, and motion level were obtained from ballistocardiography signals stored in the cloud. Data from January to October 2020 were considered. The predictive model consists of two levels: 1) the daily probability of staying healthy calculated by logistic regression and 2) a continuous density Hidden Markov Model to refine the daily prediction considering the past decision history. Results With respect to their baseline, significant increases in sleep duration, average breathing rate, average heart rate and decrease in sleep quality were associated with symptom exacerbation in COVID-19 positive respondents. In COVID-19 negative respondents, no significant sleep or cardiorespiratory metrics were observed. Evaluation of the predictive model resulted in cross-validated area under the receiving-operator curve (AUC) estimate of 0.84±0.09 which is similar to values reported for wearable-sensors. Considering additional days to confirm prediction improved the AUC estimate to 0.93±0.05. Conclusion The results obtained on the smart bed user population suggest that unobtrusive sleep metrics may offer rich information to predict and track the development of symptoms in individuals infected with COVID-19. Support (if any):


Author(s):  
Hanaa Torkey ◽  
Elhossiny Ibrahim ◽  
EZZ El-Din Hemdan ◽  
Ayman El-Sayed ◽  
Marwa A. Shouman

AbstractCommunication between sensors spread everywhere in healthcare systems may cause some missing in the transferred features. Repairing the data problems of sensing devices by artificial intelligence technologies have facilitated the Medical Internet of Things (MIoT) and its emerging applications in Healthcare. MIoT has great potential to affect the patient's life. Data collected from smart wearable devices size dramatically increases with data collected from millions of patients who are suffering from diseases such as diabetes. However, sensors or human errors lead to missing some values of the data. The major challenge of this problem is how to predict this value to maintain the data analysis model performance within a good range. In this paper, a complete healthcare system for diabetics has been used, as well as two new algorithms are developed to handle the crucial problem of missed data from MIoT wearable sensors. The proposed work is based on the integration of Random Forest, mean, class' mean, interquartile range (IQR), and Deep Learning to produce a clean and complete dataset. Which can enhance any machine learning model performance. Moreover, the outliers repair technique is proposed based on dataset class detection, then repair it by Deep Learning (DL). The final model accuracy with the two steps of imputation and outliers repair is 97.41% and 99.71% Area Under Curve (AUC). The used healthcare system is a web-based diabetes classification application using flask to be used in hospitals and healthcare centers for the patient diagnosed with an effective fashion.


2018 ◽  
Vol 26 (12) ◽  
pp. 2233-2239 ◽  
Author(s):  
Fabio Mendonca ◽  
Sheikh Shanawaz Mostafa ◽  
Fernando Morgado-Dias ◽  
Antonio G. Ravelo-Garcia

2020 ◽  
Vol 137 ◽  
pp. 27-36 ◽  
Author(s):  
Zuria Bauer ◽  
Alejandro Dominguez ◽  
Edmanuel Cruz ◽  
Francisco Gomez-Donoso ◽  
Sergio Orts-Escolano ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6481
Author(s):  
Kristin McClure ◽  
Brett Erdreich ◽  
Jason H. T. Bates ◽  
Ryan S. McGinnis ◽  
Axel Masquelin ◽  
...  

Rapid assessment of breathing patterns is important for several emergency medical situations. In this research, we developed a non-invasive breathing analysis system that automatically detects different types of breathing patterns of clinical significance. Accelerometer and gyroscopic data were collected from light-weight wireless sensors placed on the chest and abdomen of 100 normal volunteers who simulated various breathing events (central sleep apnea, coughing, obstructive sleep apnea, sighing, and yawning). We then constructed synthetic datasets by injecting annotated examples of the various patterns into segments of normal breathing. A one-dimensional convolutional neural network was implemented to detect the location of each event in each synthetic dataset and to classify it as belonging to one of the above event types. We achieved a mean F1 score of 92% for normal breathing, 87% for central sleep apnea, 72% for coughing, 51% for obstructive sleep apnea, 57% for sighing, and 63% for yawning. These results demonstrate that using deep learning to analyze chest and abdomen movement data from wearable sensors provides an unobtrusive means of monitoring the breathing pattern. This could have application in a number of critical medical situations such as detecting apneas during sleep at home and monitoring breathing events in mechanically ventilated patients in the intensive care unit.


Sign in / Sign up

Export Citation Format

Share Document