Improved FC-LFM Algorithm Integrating Time Decay Factor

Author(s):  
Gan Zhi-Gang ◽  
Rao Shen ◽  
Jiang Xiao-Ning ◽  
Yu Chang-Hong ◽  
Yu Bin-Xiao ◽  
...  
Keyword(s):  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xin-Yu Tu ◽  
Bo Zhang ◽  
Yu-Peng Jin ◽  
Guo-Jian Zou ◽  
Jian-Guo Pan ◽  
...  

Air pollution has become a critical issue in human’s life. Predicting the changing trends of air pollutants would be of great help for public health and natural environments. Current methods focus on the prediction accuracy and retain the forecasting time span within 12 hours. Shorter time span decreases the practicability of these perditions, even with higher accuracy. This study proposes an attention and autoencoder (A&A) hybrid learning approach to obtain a longer period of air pollution changing trends while holding the same high accuracy. Since pollutant concentration forecast highly relates to time changing, quite different from normal prediction problems like autotranslation, we integrate “time decay factor” into the traditional attention mechanism. The time decay factor can alleviate the impact of the value observed from a longer time before while increasing the impact of the value from a closer time point. We also utilize the hidden states in the decoder to build connection between history values and current ones. Thus, the proposed model can extract the changing trend of a longer history time span while coping with abrupt changes within a shorter time span. A set of experiments demonstrate that the A&A learning approach can obtain the changing trend of air pollutants, like PM2.5, during a longer time span of 12, 24, or even 48 hours. The approach is also tested under different pollutant concentrations and different periods and the results validate its robustness and generality.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Nakao Hayashi ◽  
Chunhua Li ◽  
Pavel I. Naumkin

We consider the initial value problem for the nonlinear dissipative Schrödinger equations with a gauge invariant nonlinearityλup-1uof orderpn<p≤1+2/nfor arbitrarily large initial data, where the lower boundpnis a positive root ofn+2p2-6p-n=0forn≥2andp1=1+2forn=1.Our purpose is to extend the previous results for higher space dimensions concerningL2-time decay and to improve the lower bound ofpunder the same dissipative condition onλ∈C:Im⁡ λ<0andIm⁡ λ>p-1/2pRe λas in the previous works.


Author(s):  
Fei Wang ◽  
Songhua Xu ◽  
Dazhi Jiang ◽  
Baoquan Zhao ◽  
Xi Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document