The multiset partitions and the generalized Stirling numbers

2020 ◽  
Vol 31 (5-6) ◽  
pp. 813-831
Author(s):  
Miloud Mihoubi ◽  
Asmaa Rahim ◽  
Said Taharbouchet
2015 ◽  
Vol 45 (9) ◽  
pp. 1583-1586
Author(s):  
Yi WANG ◽  
BaoXuan ZHU ◽  
Lily Li LIU

Author(s):  
W.-S. Chou ◽  
L. C. Hsu ◽  
P. J.-S. Shiue

The object of this paper is to show that generalized Stirling numbers can be effectively used to evaluate a class of combinatorial sums involving generalized factorials.


2010 ◽  
Vol 23 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad P. Cakić ◽  
Toufik Mansour

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Aimin Xu

We employ the generalized factorials to define a Stirling-type pair{s(n,k;α,β,r),S(n,k;α,β,r)}which unifies various Stirling-type numbers investigated by previous authors. We make use of the Newton interpolation and divided differences to obtain some basic properties of the generalized Stirling numbers including the recurrence relation, explicit expression, and generating function. The generalizations of the well-known Dobinski's formula are further investigated.


1938 ◽  
Vol 5 (4) ◽  
pp. 171-173 ◽  
Author(s):  
E. T. Bell

If m, n are integers, m > 0, n > 1, the generalized Stirling numbers are defined by the identity in x,


10.37236/564 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Matthias Schork ◽  
Mark Shattuck

A new family of generalized Stirling and Bell numbers is introduced by considering powers $(VU)^n$ of the noncommuting variables $U,V$ satisfying $UV=VU+hV^s$. The case $s=0$ (and $h=1$) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they are shown to be connection coefficients and a combinatorial interpretation in terms of statistics is given. It is also shown that these Stirling numbers can be interpreted as $s$-rook numbers introduced by Goldman and Haglund. For the associated generalized Bell numbers, the recursion relation as well as a closed form for the exponential generating function is derived. Furthermore, an analogue of Dobinski's formula is given for these Bell numbers.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 931-943 ◽  
Author(s):  
B. El-Desouky ◽  
F.A. Shiha ◽  
Ethar Shokr

In this paper, we define the multiparameter r-Whitney numbers of the first and second kind. The recurrence relations, generating functions , explicit formulas of these numbers and some combinatorial identities are derived. Some relations between these numbers and generalized Stirling numbers of the first and second kind, Lah numbers, C-numbers and harmonic numbers are deduced. Furthermore, some interesting special cases are given. Finally matrix representation for these relations are given.


Sign in / Sign up

Export Citation Format

Share Document