Generalized Stirling numbers and sums of powers of arithmetic progressions

Author(s):  
José Luis Cereceda
10.37236/3787 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Claudio de J. Pita-Ruiz V.

We work with a generalization of Stirling numbers of the second kind related to the boson normal ordering problem (P. Blasiak et al.). We show that these numbers appear as part of the coefficients of expressions in which certain sequences of products of binomials, together with their partial sums, are written as linear combinations of some other binomials. We show that the number arrays formed by these coefficients can be seen as natural generalizations of Pascal and Lucas triangles, since many of the known properties on rows, columns, falling diagonals and rising diagonals in Pascal and Lucas triangles, are also valid (some natural generalizations of them) in the arrays considered in this work. We also show that certain closed formulas for hyper-sums of powers of binomial coefficients appear in a natural way in these arrays.


2020 ◽  
Vol 26 (4) ◽  
pp. 113-121
Author(s):  
Peter J. Shiue ◽  
◽  
Shen C. Huang ◽  
Eric Jameson ◽  
◽  
...  

This paper is concerned with sums of powers of arithmetic progressions of the form a^p+(a+d)^p+(a+2d)^p+\cdots+(a+(n-1)d)^p, where n\geq 1, p is a non-negative integer, and a and d are complex numbers with d\neq 0. This paper gives an elementary proof to a theorem presented by Laissaoui and Rahmani [9] as well as an algorithm based on their formula. Additionally, this paper presents a simplification to Laissaoui and Rahmani’s formula that is better suited to computation, and a second algorithm based on this simplification. Both formulas use Stirling numbers of the second kind, which are the number of ways to partition p labelled objects into k nonempty unlabelled subsets [4]. An analysis of both algorithms is presented to show the theoretical time complexities. Finally, this paper conducts experiments with varying values of p. The experimental results show the proposed algorithm remains around 10% faster as p increases.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2021 ◽  
Vol 27 (2) ◽  
pp. 101-110
Author(s):  
José Luis Cereceda

In this paper, we obtain a new formula for the sums of k-th powers of the first n positive integers, Sk(n), that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Furthermore, we express the Bernoulli polynomials in terms of hyperharmonic polynomials and Stirling numbers of the second kind. Finally, we extend the obtained formula for Sk(n) to negative values of n.


2015 ◽  
Vol 45 (9) ◽  
pp. 1583-1586
Author(s):  
Yi WANG ◽  
BaoXuan ZHU ◽  
Lily Li LIU

Author(s):  
W.-S. Chou ◽  
L. C. Hsu ◽  
P. J.-S. Shiue

The object of this paper is to show that generalized Stirling numbers can be effectively used to evaluate a class of combinatorial sums involving generalized factorials.


2020 ◽  
Vol 31 (5-6) ◽  
pp. 813-831
Author(s):  
Miloud Mihoubi ◽  
Asmaa Rahim ◽  
Said Taharbouchet

2010 ◽  
Vol 23 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad P. Cakić ◽  
Toufik Mansour

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Aimin Xu

We employ the generalized factorials to define a Stirling-type pair{s(n,k;α,β,r),S(n,k;α,β,r)}which unifies various Stirling-type numbers investigated by previous authors. We make use of the Newton interpolation and divided differences to obtain some basic properties of the generalized Stirling numbers including the recurrence relation, explicit expression, and generating function. The generalizations of the well-known Dobinski's formula are further investigated.


Sign in / Sign up

Export Citation Format

Share Document